β-arrestin 2 negatively regulates lung cancer progression by inhibiting the TRAF6 signaling axis for NF-κB activation and autophagy induced by TLR3 and TLR4

被引:9
|
作者
Kim, Ji Young [1 ]
Shin, Ji Hye [1 ]
Kim, Mi-Jeong [1 ]
Kang, Yeeun [1 ]
Lee, Ji Su [1 ]
Son, Juhee [1 ]
Jeong, Soo-Kyung [2 ]
Kim, Daesik [3 ]
Kim, Duk-Hwan [4 ]
Chun, Eunyoung [2 ]
Lee, Ki-Young [1 ,5 ,6 ]
机构
[1] Sungkyunkwan Univ, Samsung Biomed Res Inst, Sch Med, Dept Immunol, Suwon 16419, South Korea
[2] CHA Vaccine Inst, R&D Ctr, Seongnam Si 13493, South Korea
[3] Sungkyunkwan Univ, Sch Med, Dept Precis Med, Suwon 16419, South Korea
[4] Sungkyunkwan Univ, Sch Med, Dept Mol Cell Biol, Suwon 16419, South Korea
[5] Sungkyunkwan Univ, Samsung Adv Inst Hlth Sci & Technol, Samsung Med Ctr, Dept Hlth Sci & Technol, Seoul 06351, South Korea
[6] Sungkyunkwan Univ, Single Cell Network Res Ctr, Sch Med, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
TOLL-LIKE RECEPTORS; NF-KAPPA-B; BETA-ARRESTINS; INFLAMMATION; EXPRESSION; INVASION; PROTEIN; GROWTH; CELLS;
D O I
10.1038/s41419-023-05945-3
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
& beta;-arrestin 2 (ARRB2) is functionally implicated in cancer progression via various signaling pathways. However, its role in lung cancer remains unclear. To obtain clinical insight on its function in lung cancer, microarray data from lung tumor tissues (LTTs) and matched lung normal tissues (mLNTs) of primary non-small cell lung cancer (NSCLC) patients (n = 37) were utilized. ARRB2 expression levels were markedly decreased in all 37 LTTs compared to those in matched LNTs of NSCLC patients. They were significantly co-related to enrichment gene sets associated with oncogenic and cancer genes. Importantly, Gene Set Enrichment Analysis (GSEA) between three LTTs with highly down-regulated ARRB2 and three LTTs with lowly down-regulated ARRB2 revealed significant enrichments related to toll-like receptor (TLR) signaling and autophagy genes in three LTTs with highly down-regulated ARRB2, suggesting that ARRB2 was negatively involved in TLR-mediated signals for autophagy induction in lung cancer. Biochemical studies for elucidating the molecular mechanism revealed that ARRB2 interacted with TNF receptor-associated factor 6 (TRAF6) and Beclin 1 (BECN1), thereby inhibiting the ubiquitination of TRAF6-TAB2 to activate NF-& kappa;B and TRAF6-BECN1 for autophagy stimulated by TLR3 and TLR4, suggesting that ARRB2 could inhibit the TRAF6-TAB2 signaling axis for NF-& kappa;B activation and TRAF6-BECN1 signaling axis for autophagy in response to TLR3 and TLR4. Notably, ARRB2-knockout (ARRB2KO) lung cancer cells exhibited marked enhancements of cancer migration, invasion, colony formation, and proliferation in response to TLR3 and TLR4 stimulation. Altogether, our current data suggest that ARRB2 can negatively regulate lung cancer progression by inhibiting TLR3- and TLR4-induced autophagy.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] MiR-146a mimic attenuates murine allergic rhinitis by downregulating TLR4/TRAF6/NF-κB pathway
    Wang, Jia
    Cui, Zheqing
    Liu, Lei
    Zhang, Shitao
    Zhang, Yuan
    Zhang, Yujie
    Su, Hongxia
    Zhao, Yulin
    IMMUNOTHERAPY, 2019, 11 (13) : 1095 - 1105
  • [42] Astragalus Polysaccharides Inhibit Pancreatic Cancer Progression by Downregulation of TLR4/NF-κB Signaling Pathway
    Fang, Jingjing
    Wu, Zongyang
    Wang, Jinbo
    Feng, Jiye
    Ying, Liping
    JOURNAL OF NANOMATERIALS, 2022, 2022
  • [43] Oleocanthal alleviated lipopolysaccharide-induced acute lung injury in chickens by inhibiting TLR4/NF-κB pathway activation
    Miao, Fujun
    Shan, Chunlan
    Geng, Shuxiang
    Ning, Delu
    POULTRY SCIENCE, 2023, 102 (03)
  • [44] Intestinal mucosal injury induced by obstructive jaundice is associated with activation of TLR4/TRAF6/NF-κB pathways (vol 14, e0223651, 2019)
    Tian, Xiaopeng
    Zhao, Huimin
    Zhang, Zixuan
    Guo, Zengcai
    Li, Wen
    PLOS ONE, 2019, 14 (12):
  • [45] MicroRNA-329-3p alleviates high glucose-induced endothelial cell injury via inhibition of the TLR4/TRAF6/NF-κB signaling pathway
    Song, Guangzhao
    Li, Liyan
    Yang, Ying
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2021, 21 (01)
  • [46] CCK8 negatively regulates the TLR9-induced activation of human peripheral blood pDCs by targeting TRAF6 signaling
    Jia, Xianxian
    Cong, Bin
    Zhang, Jingge
    Li, Hui
    Liu, Wenxuan
    Chang, Heping
    Dong, Mei
    Ma, Chunling
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2014, 44 (02) : 489 - 499
  • [47] Erratum to: Catalpol ameliorates LPS-induced endometritis by inhibiting inflammation and TLR4/NF-κB signaling
    Hua ZHANG
    Zhimin WU
    Yaping YANG
    Aftab SHAUKAT
    Jing YANG
    Yingfang GUO
    Tao ZHANG
    Xinying ZHU
    Jinxia QIU
    Ganzhen DENG
    Dongmei SHI
    Journal of Zhejiang University-Science B(Biomedicine & Biotechnology), 2020, 21 (04) : 341
  • [48] Erratum to: Catalpol ameliorates LPS-induced endometritis by inhibiting inflammation and TLR4/NF-κB signaling
    Hua Zhang
    Zhi-min Wu
    Ya-ping Yang
    Aftab Shaukat
    Jing Yang
    Ying-fang Guo
    Tao Zhang
    Xin-ying Zhu
    Jin-xia Qiu
    Gan-zhen Deng
    Dong-mei Shi
    Journal of Zhejiang University-SCIENCE B, 2020, 21 : 341 - 341
  • [49] Erratum to: Catalpol ameliorates LPS-induced endometritis by inhibiting inflammation and TLR4/NF-κB signaling
    Hua ZHANG
    Zhi-min WU
    Ya-ping YANG
    Aftab SHAUKAT
    Jing YANG
    Ying-fang GUO
    Tao ZHANG
    Xin-ying ZHU
    Jin-xia QIU
    Gan-zhen DENG
    Dong-mei SHI
    Journal of Zhejiang University-Science B(Biomedicine & Biotechnology), 2020, (04) : 341 - 341
  • [50] 6-Bromoindirubin-3′-Oxime Suppresses LPS-Induced Inflammation via Inhibition of the TLR4/NF-κB and TLR4/MAPK Signaling Pathways
    Chang Liu
    Xin Tang
    Wenjing Zhang
    Guohong Li
    Yingyu Chen
    Aizhen Guo
    Changmin Hu
    Inflammation, 2019, 42 : 2192 - 2204