REMOTE-SENSING DATA;
SELF-ORGANIZING MAPS;
AIRBORNE GAMMA-RAY;
MINERAL EXPLORATION;
RANDOM FORESTS;
IMAGE CLASSIFICATION;
LANDSAT;
GEOLOGY;
IDENTIFICATION;
VALIDATION;
D O I:
10.1190/GEO2022-0476.1
中图分类号:
P3 [地球物理学];
P59 [地球化学];
学科分类号:
0708 ;
070902 ;
摘要:
We develop a comprehensive study involving three different types of machine learning (unsupervised, supervised, and semi -supervised, which we emphasize) for bedrock-lithology classifi-cation using a publicly available data set from New South Wales, Australia. The goal of this work is to demonstrate (1) the value each different type of machine learning can provide and (2) which machine learning type(s) may be preferable under different circumstances. Training data are characteristically limited for geoscience problems, which makes supervised techniques sus-ceptible to overfitting; we explore if semisupervised methods can perform better in these circumstances. Using the geophysical data and geologic map provided for the study area, we compare the performance of two supervised methods (the Light Gradient Boosting Machine and eXtreme Gradient Boosting) with one semisupervised algorithm (label propagation [LP]) in three sce-narios with varied limited a priori lithologic constraints (i.e., the training data). Hyperparameter tuning is an essential component of supervised and semisupervised techniques, and the default procedure is to choose the hyperparameter combination with the largest mean cross-validation score. However, we use a new hyperparameter selection strategy that simultaneously uses the mean and standard deviation scores, and we test this new tactic for supervised and semisupervised methods. The results indicate (1) that the new hyperparameter selection technique can slightly improve the performance for supervised and semisupervised methods by 1%-2% compared with the standard selection ap-proach and (2) that LP can outperform the two supervised meth-ods by up to 10%, but it depends on how the training data are distributed. As for the unsupervised analysis, the clusters indicate heterogeneous regions that correlate well with the high-entropy areas in the supervised and semisupervised results. The clustering provides complementary results to the other two types of machine learning and is a source of supporting evidence for suggesting where more in-depth field mapping may be needed.
机构:
Univ New S Wales, Cooperat Res Ctr Spatial Informat, Sydney, NSW 2052, Australia
Univ New S Wales, Sch Surveying & Spatial Informat Syst, Sydney, NSW 2052, AustraliaUniv New S Wales, Cooperat Res Ctr Spatial Informat, Sydney, NSW 2052, Australia
Ng, Alex Hay-Man
Ge, Linlin
论文数: 0引用数: 0
h-index: 0
机构:
Univ New S Wales, Cooperat Res Ctr Spatial Informat, Sydney, NSW 2052, Australia
Univ New S Wales, Sch Surveying & Spatial Informat Syst, Sydney, NSW 2052, AustraliaUniv New S Wales, Cooperat Res Ctr Spatial Informat, Sydney, NSW 2052, Australia
Ge, Linlin
Yan, Yueguan
论文数: 0引用数: 0
h-index: 0
机构:
Univ New S Wales, Cooperat Res Ctr Spatial Informat, Sydney, NSW 2052, Australia
Univ New S Wales, Sch Surveying & Spatial Informat Syst, Sydney, NSW 2052, Australia
China Univ Min & Technol Beijing, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R ChinaUniv New S Wales, Cooperat Res Ctr Spatial Informat, Sydney, NSW 2052, Australia
Yan, Yueguan
Li, Xiaojing
论文数: 0引用数: 0
h-index: 0
机构:
Univ New S Wales, Cooperat Res Ctr Spatial Informat, Sydney, NSW 2052, Australia
Univ New S Wales, Sch Surveying & Spatial Informat Syst, Sydney, NSW 2052, AustraliaUniv New S Wales, Cooperat Res Ctr Spatial Informat, Sydney, NSW 2052, Australia
Li, Xiaojing
Chang, Hsing-Chung
论文数: 0引用数: 0
h-index: 0
机构:
Univ New S Wales, Cooperat Res Ctr Spatial Informat, Sydney, NSW 2052, Australia
Univ New S Wales, Sch Surveying & Spatial Informat Syst, Sydney, NSW 2052, AustraliaUniv New S Wales, Cooperat Res Ctr Spatial Informat, Sydney, NSW 2052, Australia
Chang, Hsing-Chung
Zhang, Kui
论文数: 0引用数: 0
h-index: 0
机构:
Univ New S Wales, Cooperat Res Ctr Spatial Informat, Sydney, NSW 2052, Australia
Univ New S Wales, Sch Surveying & Spatial Informat Syst, Sydney, NSW 2052, AustraliaUniv New S Wales, Cooperat Res Ctr Spatial Informat, Sydney, NSW 2052, Australia
Zhang, Kui
Rizos, Chris
论文数: 0引用数: 0
h-index: 0
机构:
Univ New S Wales, Cooperat Res Ctr Spatial Informat, Sydney, NSW 2052, Australia
Univ New S Wales, Sch Surveying & Spatial Informat Syst, Sydney, NSW 2052, AustraliaUniv New S Wales, Cooperat Res Ctr Spatial Informat, Sydney, NSW 2052, Australia
机构:
Univ New S Wales, Fisheries & Marine Environm Res Facil, Kensington, NSW 2052, AustraliaUniv New S Wales, Fisheries & Marine Environm Res Facil, Kensington, NSW 2052, Australia
Ochwada, Faith A.
Scandol, James P.
论文数: 0引用数: 0
h-index: 0
机构:
Cronulla Fisheries Res Ctr, NSW Dept Primary Ind, Cronulla, NSW 2230, AustraliaUniv New S Wales, Fisheries & Marine Environm Res Facil, Kensington, NSW 2052, Australia
Scandol, James P.
Gray, Charles A.
论文数: 0引用数: 0
h-index: 0
机构:
Cronulla Fisheries Res Ctr, NSW Dept Primary Ind, Cronulla, NSW 2230, AustraliaUniv New S Wales, Fisheries & Marine Environm Res Facil, Kensington, NSW 2052, Australia
机构:
RBased Serv Private Ltd, Delhi 110086, India
Indian Inst Remote Sensing, Dehra Dun 248001, Uttarakhand, IndiaRBased Serv Private Ltd, Delhi 110086, India
Singh, Sachchidanand
Singh, Harikesh
论文数: 0引用数: 0
h-index: 0
机构:
RBased Serv Private Ltd, Delhi 110086, India
Indian Inst Remote Sensing, Dehra Dun 248001, Uttarakhand, IndiaRBased Serv Private Ltd, Delhi 110086, India
Singh, Harikesh
论文数: 引用数:
h-index:
机构:
Sharma, Vishal
论文数: 引用数:
h-index:
机构:
Shrivastava, Vaibhav
Kumar, Pankaj
论文数: 0引用数: 0
h-index: 0
机构:
Inst Global Environm Strategies, Hayama, Kanagawa 2400115, JapanRBased Serv Private Ltd, Delhi 110086, India