Stylized Adversarial Defense

被引:3
|
作者
Naseer, Muzammal [1 ,2 ]
Khan, Salman [1 ,2 ]
Hayat, Munawar [3 ]
Khan, Fahad Shahbaz [1 ,4 ,5 ]
Porikli, Fatih [6 ]
机构
[1] Mohamed bin Zayed Univ Artificial Intelligence, Abu Dhabi, U Arab Emirates
[2] Australian Natl Univ, Canberra, ACT 2601, Australia
[3] Monash Univ, Clayton, Vic 3800, Australia
[4] Mohamed bin Zayed Univ Artificial Intelligence, Masdar, Abu Dhabi, U Arab Emirates
[5] Linkoping Univ, S-58183 Linkoping, Sweden
[6] Qualcomm, San Diego, CA 92121 USA
关键词
Training; Perturbation methods; Robustness; Multitasking; Predictive models; Computational modeling; Visualization; Adversarial training; style transfer; max-margin learning; adversarial attacks; multi-task objective;
D O I
10.1109/TPAMI.2022.3207917
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep Convolution Neural Networks (CNNs) can easily be fooled by subtle, imperceptible changes to the input images. To address this vulnerability, adversarial training creates perturbation patterns and includes them in the training set to robustify the model. In contrast to existing adversarial training methods that only use class-boundary information (e.g., using a cross-entropy loss), we propose to exploit additional information from the feature space to craft stronger adversaries that are in turn used to learn a robust model. Specifically, we use the style and content information of the target sample from another class, alongside its class-boundary information to create adversarial perturbations. We apply our proposed multi-task objective in a deeply supervised manner, extracting multi-scale feature knowledge to create maximally separating adversaries. Subsequently, we propose a max-margin adversarial training approach that minimizes the distance between source image and its adversary and maximizes the distance between the adversary and the target image. Our adversarial training approach demonstrates strong robustness compared to state-of-the-art defenses, generalizes well to naturally occurring corruptions and data distributional shifts, and retains the model's accuracy on clean examples.
引用
收藏
页码:6403 / 6414
页数:12
相关论文
共 50 条
  • [41] Conditional Generative Adversarial Networks with Adversarial Attack and Defense for Generative Data Augmentation
    Baek, Francis
    Kim, Daeho
    Park, Somin
    Kim, Hyoungkwan
    Lee, SangHyun
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2022, 36 (03)
  • [42] Open-Set Adversarial Defense with Clean-Adversarial Mutual Learning
    Shao, Rui
    Perera, Pramuditha
    Yuen, Pong C.
    Patel, Vishal M.
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (04) : 1070 - 1087
  • [43] Detection of Adversarial DDoS Attacks Using Symmetric Defense Generative Adversarial Networks
    Shieh, Chin-Shiuh
    Thanh-Tuan Nguyen
    Lin, Wan-Wei
    Lai, Wei Kuang
    Horng, Mong-Fong
    Miu, Denis
    ELECTRONICS, 2022, 11 (13)
  • [44] Defense against Adversarial Attacks with an Induced Class
    Xu, Zhi
    Wang, Jun
    Pu, Jian
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [45] Adversarial Defense Technology for Small Infrared Targets
    Yu, Tongan
    Xue, Yali
    He, Yiming
    Cui, Shan
    Hong, Jun
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 81 (01): : 1235 - 1250
  • [46] Background Class Defense Against Adversarial Examples
    McCoyd, Michael
    Wagner, David
    2018 IEEE SYMPOSIUM ON SECURITY AND PRIVACY WORKSHOPS (SPW 2018), 2018, : 96 - 102
  • [47] Learning defense transformations for counterattacking adversarial examples
    Li, Jincheng
    Zhang, Shuhai
    Cao, Jiezhang
    Tan, Mingkui
    NEURAL NETWORKS, 2023, 164 : 177 - 185
  • [48] A Survey on Adversarial Machine Learning for Cyberspace Defense
    Yu, Zheng-Fei
    Yan, Qiao
    Zhou, Yun
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (07): : 1625 - 1649
  • [49] Hadamard's Defense Against Adversarial Examples
    Hoyos, Angello
    Ruiz, Ubaldo
    Chavez, Edgar
    IEEE ACCESS, 2021, 9 : 118324 - 118333
  • [50] Binary thresholding defense against adversarial attacks
    Wang, Yutong
    Zhang, Wenwen
    Shen, Tianyu
    Yu, Hui
    Wang, Fei-Yue
    NEUROCOMPUTING, 2021, 445 : 61 - 71