Nanomaterial-based biohybrid hydrogel in bioelectronics

被引:24
|
作者
Shin, Minkyu [1 ]
Lim, Joungpyo [1 ]
An, Joohyun [1 ]
Yoon, Jinho [2 ]
Choi, Jeong-Woo [1 ]
机构
[1] Sogang Univ, Dept Chem & Biomol Engn, Seoul 04170, South Korea
[2] Catholic Univ Korea, Dept Biomed Chem Engn, Bucheon 14662, South Korea
基金
新加坡国家研究基金会;
关键词
Nanomaterial; Biohybrid hydrogel; Bioelectronics; Biorobotics; Flexible devices; MECHANICAL-PROPERTIES; NANOCOMPOSITE HYDROGELS; METAL NANOPARTICLES; PERFORMANCE; LIGHT;
D O I
10.1186/s40580-023-00357-7
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Despite the broadly applicable potential in the bioelectronics, organic/inorganic material-based bioelectronics have some limitations such as hard stiffness and low biocompatibility. To overcome these limitations, hydrogels capable of bridging the interface and connecting biological materials and electronics have been investigated for development of hydrogel bioelectronics. Although hydrogel bioelectronics have shown unique properties including flexibility and biocompatibility, there are still limitations in developing novel hydrogel bioelectronics using only hydrogels such as their low electrical conductivity and structural stability. As an alternative solution to address these issues, studies on the development of biohybrid hydrogels that incorporating nanomaterials into the hydrogels have been conducted for bioelectronic applications. Nanomaterials complement the shortcomings of hydrogels for bioelectronic applications, and provide new functionality in biohybrid hydrogel bioelectronics. In this review, we provide the recent studies on biohybrid hydrogels and their bioelectronic applications. Firstly, representative nanomaterials and hydrogels constituting biohybrid hydrogels are provided, and next, applications of biohybrid hydrogels in bioelectronics categorized in flexible/wearable bioelectronic devices, tissue engineering, and biorobotics are discussed with recent studies. In conclusion, we strongly believe that this review provides the latest knowledge and strategies on hydrogel bioelectronics through the combination of nanomaterials and hydrogels, and direction of future hydrogel bioelectronics.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Nanomaterial-based biohybrid hydrogel in bioelectronics
    Minkyu Shin
    Joungpyo Lim
    Joohyun An
    Jinho Yoon
    Jeong-Woo Choi
    Nano Convergence, 10
  • [2] Recent Advances in 1D Nanomaterial-Based Bioelectronics for Healthcare Applications
    Song, Sangmin
    Kim, Kyung Yeun
    Lee, Sun Hee
    Kim, Kyun Kyu
    Lee, Kyungwoo
    Lee, Wonryung
    Jeon, Hojeong
    Ko, Seung Hwan
    ADVANCED NANOBIOMED RESEARCH, 2022, 2 (03):
  • [3] Next-Generation Cardiac Interfacing Technologies Using Nanomaterial-Based Soft Bioelectronics
    Han, Sang Ihn
    Sunwoo, Sung-Hyuk
    Park, Chan Soon
    Lee, Seung-Pyo
    Hyeon, Taeghwan
    Kim, Dae-Hyeong
    ACS NANO, 2024, 18 (19) : 12025 - 12048
  • [4] Nanomaterial-based barcodes
    Wang, Miao
    Duong, Binh
    Fenniri, Hicham
    Su, Ming
    NANOSCALE, 2015, 7 (26) : 11240 - 11247
  • [5] Nanomaterial-based cocaine aptasensors
    Mokhtarzadeh, Ahad
    Dolatabadi, Jafar Ezzati Nazhad
    Abnous, Khalil
    de la Guardia, Miguel
    Ramezani, Mohammad
    BIOSENSORS & BIOELECTRONICS, 2015, 68 : 95 - 106
  • [6] Colloidal nanomaterial-based immunoassay
    Teste, Bruno
    Descroix, Stephanie
    NANOMEDICINE, 2012, 7 (06) : 917 - 929
  • [7] Nanomaterial-based electrochemical biosensors
    Wang, J
    ANALYST, 2005, 130 (04) : 421 - 426
  • [8] Nanomaterial-based contrast agents
    Jessica C. Hsu
    Zhongmin Tang
    Olga E. Eremina
    Alexandros Marios Sofias
    Twan Lammers
    Jonathan F. Lovell
    Cristina Zavaleta
    Weibo Cai
    David P. Cormode
    Nature Reviews Methods Primers, 3
  • [9] Nanomaterial-based Electrochemical Biosensors
    Sensoy, Kubra Gencdag
    Akpinar, Fatma
    Muti, Mihrican
    CURRENT NANOSCIENCE, 2024, 20 (01) : 18 - 30
  • [10] Nanomaterial-based cancer immunotherapy
    Luo, Lijia
    Shu, Rui
    Wu, Aiguo
    JOURNAL OF MATERIALS CHEMISTRY B, 2017, 5 (28) : 5517 - 5531