A Prospective Study on Diabetic Retinopathy Detection Based on Modify Convolutional Neural Network Using Fundus Images at Sindh Institute of Ophthalmology & Visual Sciences

被引:10
|
作者
Bajwa, Awais [1 ]
Nosheen, Neelam [1 ]
Talpur, Khalid Iqbal [2 ]
Akram, Sheeraz [1 ]
机构
[1] Ophthalytics, Marietta, GA 30062 USA
[2] Sindh Inst Ophthalmol & Visual Sci SIOVS, Hyderabad 71000, Pakistan
关键词
diabetic retinopathy (DR); fundus images; convolutional neural network; deep learning; ophthalmology; CLASSIFICATION; ARCHITECTURE; FRAMEWORK; FEATURES;
D O I
10.3390/diagnostics13030393
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Diabetic Retinopathy (DR) is the most common complication that arises due to diabetes, and it affects the retina. It is the leading cause of blindness globally, and early detection can protect patients from losing sight. However, the early detection of Diabetic Retinopathy is an difficult task that needs clinical experts' interpretation of fundus images. In this study, a deep learning model was trained and validated on a private dataset and tested in real time at the Sindh Institute of Ophthalmology & Visual Sciences (SIOVS). The intelligent model evaluated the quality of the test images. The implemented model classified the test images into DR-Positive and DR-Negative ones. Furthermore, the results were reviewed by clinical experts to assess the model's performance. A total number of 398 patients, including 232 male and 166 female patients, were screened for five weeks. The model achieves 93.72% accuracy, 97.30% sensitivity, and 92.90% specificity on the test data as labelled by clinical experts on Diabetic Retinopathy.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Detection of Diabetic Retinopathy Based on a Convolutional Neural Network Using Retinal Fundus Images
    Garcia, Gabriel
    Gallardo, Jhair
    Mauricio, Antoni
    Lopez, Jorge
    Del Carpio, Christian
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 : 635 - 642
  • [2] A fully convolutional neural network for recognition of diabetic retinopathy in fundus images
    Jena M.
    Mishra S.P.
    Mishra D.
    Mishra, Smita P. (smitamishra@soa.ac.in), 1600, Bentham Science Publishers (14): : 395 - 408
  • [3] Detection of Diabetic Retinopathy Images using A Fully Convolutional Neural Network
    Jena, Manaswini
    Mishra, Smita Prava
    Mishra, Debahuti
    2ND INTERNATIONAL CONFERENCE ON DATA SCIENCE AND BUSINESS ANALYTICS (ICDSBA 2018), 2018, : 523 - 527
  • [4] Hemorrhage semantic segmentation in fundus images for the diagnosis of diabetic retinopathy by using a convolutional neural network
    Skouta, Ayoub
    Elmoufidi, Abdelali
    Jai-Andaloussi, Said
    Ouchetto, Ouail
    JOURNAL OF BIG DATA, 2022, 9 (01)
  • [5] Hemorrhage semantic segmentation in fundus images for the diagnosis of diabetic retinopathy by using a convolutional neural network
    Ayoub Skouta
    Abdelali Elmoufidi
    Said Jai-Andaloussi
    Ouail Ouchetto
    Journal of Big Data, 9
  • [6] Computer-Assisted Diagnosis for Diabetic Retinopathy Based on Fundus Images Using Deep Convolutional Neural Network
    Li, Yung-Hui
    Yeh, Nai-Ning
    Chen, Shih-Jen
    Chung, Yu-Chien
    MOBILE INFORMATION SYSTEMS, 2019, 2019
  • [7] Detection of Fundus Lesions through a Convolutional Neural Network in Patients with Diabetic Retinopathy
    Santos, Carlos
    de Aguiar, Marilton Sanchotene
    Welfer, Daniel
    Belloni, Bruno Monteiro
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 2692 - 2695
  • [8] Deep Convolutional Neural Network-Based Early Automated Detection of Diabetic Retinopathy Using Fundus Image
    Xu, Kele
    Feng, Dawei
    Mi, Haibo
    MOLECULES, 2017, 22 (12):
  • [9] Classification of eye-fundus images with diabetic retinopathy using shape based features integrated into a convolutional neural network
    Srivastava, Varun
    Purwar, Ravindra Kumar
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2020, 41 (01): : 217 - 227
  • [10] Classification of Fundus Images For Diabetic Retinopathy using Artificial Neural Network
    Harun, Nor Hazlyna
    Yusof, Yuhanis
    Hassan, Faridah
    Embong, Zunaina
    2019 IEEE JORDAN INTERNATIONAL JOINT CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATION TECHNOLOGY (JEEIT), 2019, : 498 - 501