Biohydrogenation of 1,3-Butadiene to 1-Butene under Acetogenic Conditions by Acetobacterium wieringae

被引:0
|
作者
Yang, Yi [1 ]
Jin, Huijuan [1 ,2 ]
Li, Xiuying [1 ]
Yan, Jun [1 ]
机构
[1] Inst Appl Ecol, Chinese Acad Sci, Key Lab Pollut Ecol & Environm Engn, Shenyang 110016, Liaoning, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
1,3-butadiene; Acetobacterium; biohydrogenation; 1-butene; biotransformation; OH RADICALS; ISOPRENE; GENOMES; DIVERSITY; ALGORITHM; BACTERIAL;
D O I
10.1021/acs.est.2c05683
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The environmental fate and transformation mechanism(s) of 1,3-butadiene (BD) under anoxic conditions remain largely unexplored. Anaerobic consortia that can biohydrogenate BD to stoichiometric amounts of 1-butene at a maximum rate of 205.7 +/- 38.6 mu M day(-1) were derived from freshwater river sediment. The formation of 1-butene occurred only in the presence of both H-2 and CO2 with concomitant acetate production, suggesting the dependence of BD biohydrogenation on acetogenesis. The 16S rRNA gene-targeted amplicon sequencing revealed the enrichment and dominance of a novel Acetobacterium wieringae population, designated as strain N, in the BDbiohydrogenating community. Multiple genes encoding putative ene-reductases, candidate catalysts for the hydrogenation of the C=C bond in diene compounds, were annotated on the metagenomeassembled genome of strain N, and thus attributed the BD biohydrogenation activity to strain N. Our findings emphasize an essential but overlooked role of certain Acetobacterium members (e.g., strain N) contributing to the natural attenuation of BD in contaminated subsurface environments (e.g., sediment and groundwater). Future efforts to identify and characterize the ene-reductase(s) responsible for BD biohydrogenation in strain N hold promise for the development of industrial biocatalysts capable of stereoselective conversion of BD to 1-butene.
引用
下载
收藏
页码:1637 / 1645
页数:9
相关论文
共 50 条