Haplotyping SNPs for allele-specific gene editing of the expanded huntingtin allele using long-read sequencing

被引:10
|
作者
Fang, Li [1 ]
Monteys, Alex Mas [1 ]
Durr, Alexandra [2 ]
Keiser, Megan [1 ]
Cheng, Congsheng [1 ]
Harapanahalli, Akhil [1 ]
Gonzalez-Alegre, Pedro [1 ,3 ,4 ,5 ]
Davidson, Beverly L. [1 ,6 ]
Wang, Kai [1 ,6 ]
机构
[1] Childrens Hosp Philadelphia, Raymond G Perelman Ctr Cellular & Mol Therapeut, Philadelphia, PA 19104 USA
[2] Sorbonne Univ, Univ Hosp Pitie Salpetriere, AP HP, INSERM,CNRS,Paris Brain Inst, Paris, France
[3] Univ Penn, Huntingtons Dis Ctr, Philadelphia, PA 19104 USA
[4] Univ Penn, Dept Neurol, Div Movement Disorders, Philadelphia, PA 19104 USA
[5] Spk Therapeut, Philadelphia, PA 19104 USA
[6] Univ Penn, Perelman Sch Med, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA
来源
关键词
MUTANT HUNTINGTIN; CCG REPEATS; CAG REPEAT; DISEASE; NEUROPATHOLOGY; REVERSAL; MOTOR;
D O I
10.1016/j.xhgg.2022.100146
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by CAG trinucleotide repeat expansions in exon-1 of huntingtin (HTT). Currently, there is no cure for HD, and the clinical care of individuals with HD is focused on symptom man-agement. Previously, we showed allele-specific deletion of the expanded HTT allele (mHTT) using CRISPR-Cas9 by targeting nearby (<10 kb) SNPs that created or eliminated a protospacer adjacent motif (PAM) near exon-1. Here, we comprehensively analyzed all potential PAM sites within a 10.4-kb genomic region flanking exon-1 of HTT in 983 individuals with HD using a multiplex targeted long-read sequencing approach on the Oxford Nanopore platform. We developed computational tools (NanoBinner and NanoRepeat) to de-multiplex the data, detect repeats, and phase the reads on the expanded or the wild-type HTT allele. One SNP com-mon to 30% of individuals with HD of European ancestry emerged through this analysis, which was confirmed as a strong candidate for allele-specific deletion of the mHTT in human HD cell lines. In addition, up to 57% HD individuals may be candidates for allele-specific editing through combinatorial SNP targeting. Cumulatively, we provide a haplotype map of the region surrounding exon-1 of HTT in individuals affected with HD. Our workflow can be applied to other repeat expansion diseases to facilitate the design of guide RNAs for allele-specific gene editing.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss
    Bence György
    Carl Nist-Lund
    Bifeng Pan
    Yukako Asai
    K. Domenica Karavitaki
    Benjamin P. Kleinstiver
    Sara P. Garcia
    Mikołaj P. Zaborowski
    Paola Solanes
    Sofia Spataro
    Bernard L. Schneider
    J. Keith Joung
    Gwenaëlle S. G. Géléoc
    Jeffrey R. Holt
    David P. Corey
    Nature Medicine, 2019, 25 : 1123 - 1130
  • [32] Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss
    Gyorgy, Bence
    Nist-Lund, Carl
    Pan, Bifeng
    Asai, Yukako
    Karavitaki, K. Domenica
    Kleinstiver, Benjamin P.
    Garcia, Sara P.
    Zaborowski, Mikolaj P.
    Solanes, Paola
    Spataro, Sofia
    Schneider, Bernard L.
    Joung, J. Keith
    Geleoc, Gwenaelle S. G.
    Holt, Jeffrey R.
    Corey, David P.
    NATURE MEDICINE, 2019, 25 (07) : 1123 - +
  • [33] Towards personalised allele-specific CRISPR gene editing to treat autosomal dominant disorders
    Kathleen A. Christie
    David G. Courtney
    Larry A. DeDionisio
    Connie Chao Shern
    Shyamasree De Majumdar
    Laura C. Mairs
    M. Andrew Nesbit
    C. B. Tara Moore
    Scientific Reports, 7
  • [34] Powerful Identification of Cis-regulatory SNPs in Human Primary Monocytes Using Allele-Specific Gene Expression
    Almlof, Jonas Carlsson
    Lundmark, Per
    Lundmark, Anders
    Ge, Bing
    Maouche, Seraya
    Goering, Harald H. H.
    Liljedahl, Ulrika
    Enstrom, Camilla
    Brocheton, Jessy
    Proust, Carole
    Godefroy, Tiphaine
    Sambrook, Jennifer G.
    Jolley, Jennifer
    Crisp-Hihn, Abigail
    Foad, Nicola
    Lloyd-Jones, Heather
    Stephens, Jonathan
    Gwilliam, Rhian
    Rice, Catherine M.
    Hengstenberg, Christian
    Samani, Nilesh J.
    Erdmann, Jeanette
    Schunkert, Heribert
    Pastinen, Tomi
    Deloukas, Panos
    Goodall, Alison H.
    Ouwehand, Willem H.
    Cambien, Francois
    Syvanen, Ann-Christine
    PLOS ONE, 2012, 7 (12):
  • [35] Characterisation of the novel HLA-B*18:243 allele using short- and long-read sequencing technologies
    Secco, Danielle
    Cunha, Mayara
    Andrade, Gabriela
    Vianna, Romulo
    Porto, Luis Cristovao
    HLA, 2024, 103 (06)
  • [36] From gene to dose: Long-read sequencing and -allele tools to refine phenotype predictions of CYP2C19
    Graansma, Lonneke J.
    Zhai, Qinglian
    Busscher, Loes
    Menafra, Roberta
    van den Berg, Redmar R.
    Kloet, Susan L.
    van der Lee, Maaike
    FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [37] Allele-Specific Reduction of the Mutant Huntingtin Allele Using Transcription Activator-Like Effectors in Human Huntington's Disease Fibroblasts
    Fink, Kyle D.
    Deng, Peter
    Gutierrez, Josh
    Anderson, Joseph S.
    Torrest, Audrey
    Komarla, Anvita
    Kalomoiris, Stefanos
    Cary, Whitney
    Anderson, Johnathon D.
    Gruenloh, William
    Duffy, Alexandra
    Tempkin, Teresa
    Annett, Geralyn
    Wheelock, Vicki
    Segal, David J.
    Nolta, Jan A.
    CELL TRANSPLANTATION, 2016, 25 (04) : 677 - 686
  • [38] Allele-specific inhibition of HLA sequencing using peptide nucleic acids (PNA)
    Paul, P
    Jurcago, R
    Schatz, H
    Cook, D
    Ball, E
    HUMAN IMMUNOLOGY, 2005, 66 : S109 - S109
  • [39] Long-read sequencing for reliably calling the mompS allele in Legionella pneumophila sequence-based typing
    Krovel, Anne Vatland
    Hetland, Marit A. K.
    Bernhoff, Eva
    Bjorheim, Anna Steensen
    Soma, Markus Andre
    Lohr, Iren H.
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2023, 13
  • [40] SCALE: modeling allele-specific gene expression by single-cell RNA sequencing
    Yuchao Jiang
    Nancy R. Zhang
    Mingyao Li
    Genome Biology, 18