Structural and functional insights into the glycoside hydrolase family 30 xylanase of the rumen bacterium Ruminococcus flavefaciens

被引:7
|
作者
Singh, Shubha [1 ]
Ahmed, Jebin [1 ]
Gavande, Parmeshwar Vitthal [1 ]
Fontes, Carlos M. G. A. [2 ,3 ]
Goyal, Arun [1 ,4 ]
机构
[1] Indian Inst Technol Guwahati, Dept Biosci & Bioengn, Carbohydrate Enzyme Biotechnol Lab, Gauhati, Assam, India
[2] Univ Lisbon, CIISA, Fac Med Vet, Ave Univ Tecn, P-1300477 Lisbon, Portugal
[3] NZYTech Genes & Enzymes, Estr Paco Lumiar,Campus Lumiar,Edificio E-RC, P-1649038 Lisbon, Portugal
[4] Indian Inst Technol Guwahati, Dept Biosci & Bioengn, Gauhati 781039, Assam, India
关键词
Ruminococcus flavefaciens; Glycoside hydrolase; Molecular dynamic simulation; GLUCURONOXYLAN-XYLANOHYDROLASE XYN30A; SMALL-ANGLE SCATTERING; BIOLOGICAL MACROMOLECULES; PSEUDOPEDOBACTER-SALTANS; PROTEINS; RESOLUTION; ENDO-BETA-1,4-XYLANASE; CRYSTALLIZATION; CONVERSION; SAXS;
D O I
10.1016/j.molstruc.2022.134155
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The family 30 glycoside hydrolase (RfGH30) from Ruminococcus flavefaciens expressing xylanase activ-ity was homology modeled. The structure revealed a (,B/a)8 TIM barrel topology along with an asso-ciated 'side ,B-structure'. Secondary structure analysis by circular dichroism displayed 28.09% a-helices and 21.02% ,B-strands, which corroborated with the prediction results. Multiple Sequence Alignment and structure superposition of RfGH30 with its homologue indicate that Glu200 and Glu302 are the cat-alytic residues displaying a retaining-type of catalysis. Molecular Dynamics (MD) simulation of RfGH30 confirmed the structural compactness and steadiness of modeled structure. Molecular docking studies showed maximum binding affinity with xylobiose that was corroborated by the total binding Gibbs free energy of-160.5 kJ/mol calculated by g_mmpbsa tool. MD simulation of RfGH30-xylobiose confirmed the structural specificity of catalytic residues and its increased stability in presence of ligand. Small angle X-ray scattering (SAXS) analysis of RfGH30 confirmed its monodispersed, fully folded and elon-gated structure in solution form. Dummy atom model revealed monomeric form of RfGH30 at 2.8 mg/ml, while at 4 mg/ml as dimer. Dynamic light scattering analysis of RfGH30 showed monodispersity and in-crease in hydrodynamic radius (Rh) from 2.0 to 4.0 mg/mL, displaying possible dimerization of RfGH30 at 4.0 mg/mL as corroborated by SAXS analysis. The lowered zeta potential of RfGH30 at 4 mg/mL also indicated the formation of a dimer. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Substrate specificity in glycoside hydrolase family 10 - Structural and kinetic analysis of the streptomyces lividans xylanase 10A
    Ducros, V
    Charnock, SJ
    Derewenda, U
    Derewenda, ZS
    Dauter, Z
    Dupont, C
    Shareck, F
    Morosoli, R
    Kluepfel, D
    Davies, GJ
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (30) : 23020 - 23026
  • [22] Structural and Functional Analyses of a Glycoside Hydrolase Family 5 Enzyme with an Unexpected β-Fucosidase Activity
    Yoshida, Shosuke
    Park, David S.
    Bae, Brian
    Mackie, Roderick
    Cann, Isaac K. O.
    Nair, Satish K.
    BIOCHEMISTRY, 2011, 50 (16) : 3369 - 3375
  • [23] Structural and Functional Analysis of a Glycoside Hydrolase Family 97 Enzyme from Bacteroides thetaiotaomicron
    Kitamura, Momoyo
    Okuyama, Masayuki
    Tanzawa, Fumiko
    Mori, Haruhide
    Kitago, Yu
    Watanabe, Nobuhisa
    Kimura, Atsuo
    Tanaka, Isao
    Yao, Min
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (52) : 36328 - 36337
  • [24] Abundance and Diversity of Dockerin-Containing Proteins in the Fiber-Degrading Rumen Bacterium, Ruminococcus flavefaciens FD-1
    Rincon, Marco T.
    Dassa, Bareket
    Flint, Harry J.
    Travis, Anthony J.
    Jindou, Sadanari
    Borovok, Ilya
    Lamed, Raphael
    Bayer, Edward A.
    Henrissat, Bernard
    Coutinho, Pedro M.
    Antonopoulos, Dion A.
    Miller, Margret E. Berg
    White, Bryan A.
    PLOS ONE, 2010, 5 (08):
  • [25] The structure of a glycoside hydrolase 29 family member from a rumen bacterium reveals unique, dual carbohydrate-binding domains
    Summers, Emma L.
    Moon, Christina D.
    Atua, Renee
    Arcus, Vickery L.
    ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2016, 72 : 750 - 761
  • [26] Structural insights into polysaccharide recognition by Flavobacterium johnsoniae dextranase, a member of glycoside hydrolase family 31
    Tsutsumi, Kenta
    Gozu, Yoshifumi
    Nishikawa, Atsushi
    Tonozuka, Takashi
    FEBS JOURNAL, 2020, 287 (06) : 1195 - 1207
  • [27] Structural Analysis of a Family 101 Glycoside Hydrolase in Complex with Carbohydrates Reveals Insights into Its Mechanism
    Gregg, Katie J.
    Suits, Michael D. L.
    Deng, Lehua
    Vocadlo, David J.
    Boraston, Alisdair B.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2015, 290 (42) : 25657 - 25669
  • [28] Publisher Correction: Structural insights into β-1,3-glucan cleavage by a glycoside hydrolase family
    Camila R. Santos
    Pedro A. C. R. Costa
    Plínio S. Vieira
    Sinkler E. T. Gonzalez
    Thamy L. R. Correa
    Evandro A. Lima
    Fernanda Mandelli
    Renan A. S. Pirolla
    Mariane N. Domingues
    Lucelia Cabral
    Marcele P. Martins
    Rosa L. Cordeiro
    Atílio T. Junior
    Beatriz P. Souza
    Érica T. Prates
    Fabio C. Gozzo
    Gabriela F. Persinoti
    Munir S. Skaf
    Mario T. Murakami
    Nature Chemical Biology, 2020, 16 : 931 - 931
  • [29] Structural and biochemical insights into the substrate -binding mechanism of a novel glycoside hydrolase family 134 β-mannanase
    You, Xin
    Qin, Zhen
    Li, Yan-Xiao
    Yan, Qiao-Juan
    Li, Bin
    Jiang, Zheng-Qiang
    BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2018, 1862 (06): : 1376 - 1388
  • [30] Structural insights into the substrate specificity and transglycosylation activity of a fungal glycoside hydrolase family 5 β-mannosidase
    Zhou, Peng
    Liu, Yang
    Yan, Qiaojuan
    Chen, Zhongzhou
    Qin, Zhen
    Jiang, Zhengqiang
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2014, 70 : 2970 - 2982