Relative entropy dimension for countable amenable group actions

被引:0
|
作者
Xiao, Zubiao [1 ]
Yin, Zhengyu [2 ]
机构
[1] Fuzhou Univ, Sch Math & Stat, Fuzhou 350116, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
amenable groups; relative entropy dimensions; relative dimension sets; DISJOINTNESS;
D O I
10.1007/s10473-023-0607-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the topological complexities of relative entropy zero extensions acted upon by countable-infinite amenable groups. First, for a given F(sic)lner sequence {F-n}(n=0)(+infinity), we define the relative entropy dimensions and the dimensions of the relative entropy generating sets to characterize the sub-exponential growth of the relative topological complexity. we also investigate the relations among these. Second, we introduce the notion of a relative dimension set. Moreover, using the method, we discuss the disjointness between the relative entropy zero extensions via the relative dimension sets of two extensions, which says that if the relative dimension sets of two extensions are different, then the extensions are disjoint.
引用
下载
收藏
页码:2430 / 2448
页数:19
相关论文
共 50 条
  • [1] Relative entropy dimension for countable amenable group actions
    Zubiao Xiao
    Zhengyu Yin
    Acta Mathematica Scientia, 2023, 43 : 2430 - 2448
  • [2] RELATIVE ENTROPY DIMENSION FOR COUNTABLE AMENABLE GROUP ACTIONS
    肖祖彪
    殷正宇
    Acta Mathematica Scientia, 2023, 43 (06) : 2430 - 2448
  • [3] Local Entropy, Metric Entropy and Topological Entropy for Countable Discrete Amenable Group Actions
    Ren, Xiankun
    Sun, Wenxiang
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (07):
  • [4] Topological Entropy Dimension of Amenable Group Actions for Noncompact Sets
    Lei Liu
    Jinlei Jiao
    Xiaoyao Zhou
    Frontiers of Mathematics, 2025, 20 (2): : 375 - 401
  • [5] Relative uniformly positive entropy of induced amenable group actions
    Liu, Kairan
    Wei, Runju
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024, 44 (02) : 569 - 593
  • [6] MIXING ACTIONS OF ZERO ENTROPY FOR COUNTABLE AMENABLE GROUPS
    Danilenko, Alexandre I.
    COLLOQUIUM MATHEMATICUM, 2016, 145 (02) : 179 - 186
  • [7] The spectrum of completely positive entropy actions of countable amenable groups
    Dooley, AH
    Golodets, VY
    JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 196 (01) : 1 - 18
  • [8] Algebraic entropy of amenable group actions
    Simone Virili
    Mathematische Zeitschrift, 2019, 291 : 1389 - 1417
  • [9] Entropy and mixing for amenable group actions
    Rudolph, DJ
    Weiss, B
    ANNALS OF MATHEMATICS, 2000, 151 (03) : 1119 - 1150
  • [10] Sequence entropy for amenable group actions
    Liu, Chunlin
    Yan, Kesong
    PHYSICA SCRIPTA, 2023, 98 (12)