Small-d MSR Codes With Optimal Access, Optimal Sub-Packetization, and Linear Field Size

被引:5
|
作者
Vajha, Myna [1 ]
Balaji, S. B. [2 ]
Kumar, P. Vijay [3 ]
机构
[1] Qualcomm, Bengaluru 560056, India
[2] NXP, Bengaluru 560045, India
[3] Indian Inst Sci Bengaluru, Dept Elect Commun Engn, Bengaluru 560012, India
关键词
Coding theory; distributed storage; regenerating codes; minimum storage regenerating (MSR) codes; optimal access repair; Small-d codes; optimal sub-packetization level codes; MDS CODES; DISTRIBUTED STORAGE; REGENERATING CODES; OPTIMAL REPAIR;
D O I
10.1109/TIT.2023.3250458
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an explicit construction of a class of optimal-access, minimum storage regenerating (MSR) codes, for small values of the number d of helper nodes. The construction is valid for any parameter set (n, k, d) with d. {k + 1, k + 2, k + 3} and employs a finite field Fq of size q = O(n). We will refer to the constructed codes as Small- d MSR codes. The sub-packetization level a is given by a = s. ns., where s = d-k+ 1. By an earlier result on the sub-packetization level for optimal-access MSR codes, this is the smallest value possible.
引用
收藏
页码:4303 / 4332
页数:30
相关论文
共 50 条
  • [41] A Construction of Maximally Recoverable Codes With Order-Optimal Field Size
    Cai, Han
    Miao, Ying
    Schwartz, Moshe
    Tang, Xiaohu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (01) : 204 - 212
  • [42] Explicit Rate-Optimal Streaming Codes With Smaller Field Size
    Vajha, Myna
    Ramkumar, Vinayak
    Krishnan, M. Nikhil
    Kumar, P. Vijay
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (05) : 3242 - 3261
  • [43] Explicit Rate-Optimal Streaming Codes with Smaller Field Size
    Vajha, Myna
    Ramkumar, Vinayak
    Krishnan, M. Nikhil
    Kumar, P. Vijay
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 736 - 741
  • [44] On the structure of optimal linear block codes of length a multiple of 4 and d=4
    Esmaeili, M
    Gulliver, TA
    ARS COMBINATORIA, 2005, 74 : 25 - 31
  • [45] Linear Size Optimal q-ary Constant-Weight Codes and Constant-Composition Codes
    Chee, Yeow Meng
    Dau, Son Hoang
    Ling, Alan C. H.
    Ling, San
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (01) : 140 - 151
  • [46] OPTIMAL CLUSTERING SIZE OF SMALL FILE ACCESS IN NET WORK ATTACHED STORAGE DEVICE
    Deng, Yuhui
    Wang, Frank
    Helian, N. A.
    Feng, Dan
    Zhou, K. E.
    PARALLEL PROCESSING LETTERS, 2006, 16 (04) : 501 - 512
  • [47] Optimal-size problem kernels for d-Hitting Set in linear time and space
    van Bevern, Rene
    Smirnov, Pavel V.
    INFORMATION PROCESSING LETTERS, 2020, 163
  • [48] Rate-Optimal Streaming Codes with Smaller Field Size Under Less-Stringent Decoding-Delay Requirements
    Bhatnagar, Shobhit
    Ramkumar, Vinayak
    Kumar, P. Vijay
    2022 IEEE INFORMATION THEORY WORKSHOP (ITW), 2022, : 612 - 617
  • [49] Optimal design of a small size trigeneration plant in civil users: A MINLP (Mixed Integer Non Linear Programming Model)
    Arcuri, P.
    Beraldi, P.
    Florio, G.
    Fragiacomo, P.
    ENERGY, 2015, 80 : 628 - 641
  • [50] Optimal design of a high homogeneous and small-size shim coil for atomic spin gyroscope based on 0-1 linear programming
    Deng, Dongge
    Zhu, Mingzhi
    Shu, Qiang
    Wang, Baoxu
    Yang, Fei
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2020, 64 (1-4) : 165 - 172