Masked Face Detection and Recognition System Based on Deep Learning Algorithms

被引:1
|
作者
Al-Dmour, Hayat [1 ]
Tareef, Afaf [1 ]
Alkalbani, Asma Musabah [2 ]
Hammouri, Awni [1 ]
Alrahmani, Ban [1 ]
机构
[1] Mutah Univ, Fac Informat Technol, Al Karak, Jordan
[2] Univ Technol & Appl Sci, Dept Informat Technol, CAS IBRI, Muscat 516, Oman
关键词
COVID-19; facemask detection; face recognition; AI; deep learning; Convolutional Neural Network (CNN);
D O I
10.12720/jait.14.2.224-232
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Coronavirus (COVID-19) pandemic and its several variants have developed new habits in our daily lives. For instance, people have begun covering their faces in public areas and tight quarters to restrict the spread of the disease. However, the usage of face masks has hampered the ability of facial recognition systems to determine people's identities for registration authentication and dependability purpose. This study proposes a new deep-learning-based system for detecting and recognizing masked faces and determining the identity and whether the face is properly masked or not using several face image datasets. The proposed system was trained using a Convolutional Neural Network (CNN) with crossvalidation and early stopping. First, a binary classification model was trained to discriminate between masked and unmasked faces, with the top model achieving a 99.77% accuracy. Then, a multi- class model was trained to classify the masked face images into three labels, i.e., correctly, incorrectly, and non-masked faces. The proposed model has achieved a high accuracy of 99.5%. Finally, the system recognizes the person's identity with an average accuracy of 97.98%. The visual assessment has proved that the proposed system succeeds in locating and matching faces.
引用
收藏
页码:224 / 232
页数:9
相关论文
共 50 条
  • [21] Invoice Detection and Recognition System Based on Deep Learning
    Yao, Xunfeng
    Sun, Hao
    Li, Sijun
    Lu, Weichao
    SECURITY AND COMMUNICATION NETWORKS, 2022, 2022
  • [22] A survey of text detection and recognition algorithms based on deep learning technology
    Wang, Xiao-Feng
    He, Zhi-Huang
    Wang, Kai
    Wang, Yi-Fan
    Zou, Le
    Wu, Zhi-Ze
    NEUROCOMPUTING, 2023, 556
  • [23] Deep learning model for deep fake face recognition and detection
    Suganthi S.T.
    Ayoobkhan M.U.A.
    Kumar V.K.
    Bacanin N.
    Venkatachalam K.
    Stepán H.
    Pavel T.
    PeerJ Computer Science, 2022, 8
  • [24] Deep learning model for deep fake face recognition and detection
    Suganthi, S. T.
    Ayoobkhan, Mohamed Uvaze Ahamed
    Kumar, Krishna, V
    Bacanin, Nebojsa
    Venkatachalam, K.
    Stepan, Hubalovsky
    Pavel, Trojovsky
    PEERJ COMPUTER SCIENCE, 2022, 8
  • [25] A Deep Learning based Approach for Real Time Face Recognition System
    Das Tithy, Tanusree
    Chakraborty, Soarov
    Islam, Rabaya
    Aziz, Abdul
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND INFORMATION TECHNOLOGY 2021 (ICECIT 2021), 2021,
  • [26] Masked Face Emotion Recognition Based on Facial Landmarks and Deep Learning Approaches for Visually Impaired People
    Mukhiddinov, Mukhriddin
    Djuraev, Oybek
    Akhmedov, Farkhod
    Mukhamadiyev, Abdinabi
    Cho, Jinsoo
    SENSORS, 2023, 23 (03)
  • [27] An indoor scene recognition system based on deep learning evolutionary algorithms
    Mouna Afif
    Riadh Ayachi
    Yahia Said
    Mohamed Atri
    Soft Computing, 2023, 27 : 15581 - 15594
  • [28] An indoor scene recognition system based on deep learning evolutionary algorithms
    Afif, Mouna
    Ayachi, Riadh
    Said, Yahia
    Atri, Mohamed
    SOFT COMPUTING, 2023, 27 (21) : 15581 - 15594
  • [29] Occluded Face Recognition Based on the Deep Learning
    Wu, Gui
    Tao, Jun
    Xu, Xun
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 793 - 797
  • [30] Deep Learning Based Representation for Face Recognition
    Prasad, Puja S.
    Pathak, Rashmi
    Gunjan, Vinit Kumar
    Rao, H. V. Ramana
    ICCCE 2019: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND CYBER-PHYSICAL ENGINEERING, 2020, 570 : 419 - 424