A flow model in bulk metallic glasses

被引:11
|
作者
Zhang, H. [1 ]
Wang, Z. [1 ]
Yang, H. J. [1 ]
Shi, X. H. [1 ]
Liaw, P. K. [2 ]
Qiao, J. W. [1 ,3 ]
机构
[1] Taiyuan Univ Technol, Coll Mat Sci & Engn, Taiyuan 030024, Peoples R China
[2] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[3] Taiyuan Univ Technol, Key Lab Interface Sci & Engn Adv Mat, Minist Educ, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Bulk metallic glasses; A flow model; The shear -band velocity; The Arrhenius law; SHEAR-BAND CAVITIES; INHOMOGENEOUS FLOW; TEMPERATURE; DYNAMICS;
D O I
10.1016/j.scriptamat.2022.115047
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Based on the microscopic mechanisms applicable to bulk metallic glasses (BMGs), such as the free-volume theory and fracture theory of brittle solids, a constitutive equation for the crack-like propagation velocity of shear bands in BMGs is deduced, vSBcl = v0a0exp( - ES /kT). Furthermore, a flow model of monolithic BMGs is successfully established, logvSB = log(v0a0) + logeES/(kTl) - logeES/(kT). The model explains clearly the fundamental deformation of BMGs at the temperature far below the liquidus temperature, i.e., the mechanism of serrated flows. Not only does the model accurately predict the transition between serrated and non-serrated flows, but the Arrhenius equation and activation energy received by the current model for most BMGs are consistent with the experimental results. The current study paves a way to plastically process BMGs, avoiding catastrophic plasticity instability.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Flow and fracture in Zr-based bulk metallic glasses
    Suh, D
    Dauskardt, RH
    ANNALES DE CHIMIE-SCIENCE DES MATERIAUX, 2002, 27 (05): : 25 - 40
  • [22] Plastic flow in bulk metallic glasses: Effect of strain rate
    Yang, Fuqian
    APPLIED PHYSICS LETTERS, 2007, 91 (05)
  • [23] On the applicability of a mesoscopic interface sliding controlled model for understanding superplastic flow in bulk metallic glasses
    Buenz, J.
    Padmanabhan, K. A.
    Wilde, G.
    INTERMETALLICS, 2015, 60 : 50 - 57
  • [24] The fracture of bulk metallic glasses
    Sun, B. A.
    Wang, W. H.
    PROGRESS IN MATERIALS SCIENCE, 2015, 74 : 211 - 307
  • [25] Toughness of Bulk Metallic Glasses
    Madge, Shantanu V.
    METALS, 2015, 5 (03): : 1279 - 1305
  • [26] Properties of bulk metallic glasses
    D. V. Louzguine-Luzgin
    V. I. Polkin
    Russian Journal of Non-Ferrous Metals, 2017, 58 : 80 - 92
  • [27] Bulk Metallic Glasses VI
    Liaw, Peter K.
    Choo, Hahn
    Gao, Yanfei
    Wang, Gongyao
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2010, 41A (07): : 1627 - 1627
  • [28] Diffusion in bulk metallic glasses
    Syutkin, V. M.
    Grebenkin, S.
    APPLIED PHYSICS LETTERS, 2020, 117 (13)
  • [29] Decomposition of bulk metallic glasses
    Miller, MK
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1998, 250 (01): : 133 - 140
  • [30] Advances in bulk metallic glasses
    Peter K. Liaw
    Gongyao Wang
    Judy Schneider
    JOM, 2010, 62 : 9 - 9