Infinite not contact isotopic embeddings in (S2n-1,ξstd)$(S∧{2n-1},\xi _{\rm {std}})$ for n>4$n\geqslant 4$

被引:1
|
作者
Zhou, Zhengyi [1 ,2 ]
机构
[1] Chinese Acad Sci, Morningside Ctr Math, Beijing, Peoples R China
[2] Chinese Acad Sci, Inst Math, AMSS, Beijing, Peoples R China
关键词
FLOER HOMOLOGY; SYMPLECTIC HOMOLOGY;
D O I
10.1112/blms.12717
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For n >= 4, we show that there are infinitely many formally contact isotopic embeddings of (ST*Sn-1,xi(std)) to (S2n-1,xi(std)) that are not contact isotopic. This resolves a conjecture of Casals and Etnyre (Geom. Funct. Anal. 30 (2020), no. 1, 1-33) except for the n=3 case. The argument does not appeal to the surgery formula of critical handle attachment for Floer theory/SFT.
引用
收藏
页码:149 / 155
页数:7
相关论文
共 50 条