GENERALIZED BIVARIATE CONDITIONAL FIBONACCI AND LUCAS HYBRINOMIALS

被引:1
|
作者
Kome, Sure [1 ]
Dallaroglu, Zeynep Kumtas [1 ]
机构
[1] Nevsehir Haci Bektas Veli Univ, Dept Math, Nevsehir, Turkiye
关键词
Bivariate conditional polynomials; hybrid numbers; Binet formula's; generating function; Catalan's identities; Cassini's identities;
D O I
10.31801/cfsuasmas.1249576
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Hybrid numbers are generalizations of complex, hyperbolic and dual numbers. In recent years, studies related with hybrid numbers have been increased significantly. In this paper, we introduce the generalized bivariate conditional Fibonacci and Lucas hybrinomials. Also, we present the Binet formula, generating functions, some significant identities, Catalan's identities and Cassini's identities of the generalized bivariate conditional Fibonacci and Lucas hybrinomials. Finally, we give more general results compared to the previous works.
引用
收藏
页码:37 / 63
页数:27
相关论文
共 50 条
  • [21] Identities on generalized Fibonacci and Lucas numbers
    Nagaraja, K. M.
    Dhanya, P.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2020, 26 (03) : 189 - 202
  • [22] PROPERTIES OF GENERALIZED FIBONACCI AND LUCAS POLYNOMIALS
    Agrawal, Garvita
    Teeth, Manjeet Singh
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2022, 21 (3-4): : 175 - 188
  • [23] Identities involving partial derivatives of bivariate Fibonacci and Lucas polynomials
    Yu, HQ
    Liang, CG
    FIBONACCI QUARTERLY, 1997, 35 (01): : 19 - 23
  • [24] MORE PROPERTIES OF GENERALIZED FIBONACCI AND LUCAS NUMBERS
    Namarneh, Tareq
    Al-Kateeb, Ala'a
    MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2023, 35 (02) : 129 - 135
  • [25] SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES
    Irmak, Nurettin
    Alp, Murat
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (04): : 331 - 338
  • [26] ON GENERALIZED FIBONACCI AND LUCAS NUMBERS BY MATRIX METHODS
    Cerda-Morales, Gamaliel
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (02): : 173 - 179
  • [27] SOME SUBSEQUENCES OF THE GENERALIZED FIBONACCI AND LUCAS SEQUENCES
    Kilic, Emrah
    Kilic, Elif Tan
    UTILITAS MATHEMATICA, 2015, 97 : 233 - 239
  • [28] Sieve formulas for the generalized Fibonacci and Lucas numbers
    Strazdins, I
    FIBONACCI QUARTERLY, 1999, 37 (04): : 361 - 366
  • [29] SUM FORMULAE OF GENERALIZED FIBONACCI AND LUCAS NUMBERS
    Cerin, Zvonko
    Bitim, Bahar Demirturk
    Keskin, Refik
    HONAM MATHEMATICAL JOURNAL, 2018, 40 (01): : 199 - 210
  • [30] Sums of products of generalized Fibonacci and Lucas numbers
    Kilic, E.
    Prodinger, H.
    ACTA MATHEMATICA HUNGARICA, 2015, 145 (01) : 17 - 25