Identification of multiple myeloma resistant cells using machine learning and laser tweezers Raman spectroscopy

被引:0
|
作者
Xie, Xingfei [1 ]
Wu, Ziqing [1 ]
Yuan, Hang [2 ]
Zhou, Zhehai [1 ]
Zhang, Pengfei [2 ]
机构
[1] Beijing Informat Sci & Technol Univ, Key Lab, Minist Educ Optoelect Measurement Technol & Instr, Beijing 100192, Peoples R China
[2] Tianjin Univ, Sch Precis Instrument & Optoelect Engn, Tianjin 300072, Peoples R China
来源
OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS XIII | 2023年 / 12770卷
基金
中国国家自然科学基金;
关键词
Multiple Myeloma; drug resistance detection; laser tweezers Raman spectroscopy; artificial intelligence algorithm; DRUG-RESISTANCE; ERK;
D O I
10.1117/12.2686545
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Multiple myeloma may develop resistance to certain drugs during chemotherapy, which have a fatal impact on treatment efficacy. At present, the drug resistance detection methods for multiple myeloma, such as proteomic identification and clone formation analysis, are relatively complex, and the accuracy and detection time are not ideal. In our work, laser tweezers Raman spectroscopy was used to collect 412 groups of spectra of two kinds of cells, namely, MM.1R and MM.1S, which were respectively resistant to dexamethasone and sensitive to dexamethasone. We selected support vector machine, random forest, linear discriminant analysis and other algorithms to train the pretreated Raman spectra, and the recognition accuracy on the test set was above 95%. This result shows that the combination of laser tweezers Raman spectroscopy and artificial intelligence algorithm can quickly detect drug resistance of cancer cells.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Label-Free Identification of Exosomes using Raman Spectroscopy and Machine Learning
    Parlatan, Ugur
    Ozen, Mehmet Ozgun
    Kecoglu, Ibrahim
    Koyuncu, Batuhan
    Torun, Hulya
    Khalafkhany, Davod
    Loc, Irem
    Ogut, Mehmet Giray
    Inci, Fatih
    Akin, Demir
    Solaroglu, Ihsan
    Ozoren, Nesrin
    Unlu, Mehmet Burcin
    Demirci, Utkan
    SMALL, 2023, 19 (09)
  • [22] Rapid identification of salmonella serovars by using Raman spectroscopy and machine learning algorithm
    Sun, Jiazheng
    Xu, Xuefang
    Feng, Songsong
    Zhang, Hanyu
    Xu, Lingfeng
    Jiang, Hong
    Sun, Baibing
    Meng, Yuyan
    Chen, Weizhou
    TALANTA, 2023, 253
  • [23] Laser tweezers Raman spectroscopy detects individual neoplastic and normal hemotopoietic cells
    Taylor, DS
    Chan, JW
    Zerdling, T
    Lane, SM
    Ihara, K
    Huser, T
    BLOOD, 2005, 106 (11) : 211B - 211B
  • [24] Monitoring and rapid quantification of total carotenoids in Rhodotorula glutinis cells using laser tweezers Raman spectroscopy
    Tao, Zhanhua
    Wang, Guiwen
    Xu, Xiaodong
    Yuan, Yufeng
    Wang, Xue
    Li, Yongqing
    FEMS MICROBIOLOGY LETTERS, 2011, 314 (01) : 42 - 48
  • [25] Analysis and comparison of machine learning methods for blood identification using single-cell laser tweezer Raman spectroscopy
    Liu, Yiming
    Wang, Ziqi
    Zhou, Zhehai
    Xiong, Tao
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2022, 277
  • [26] Fast detection of saxitoxin using laser tweezers surface enhanced Raman spectroscopy
    Huai, Qi-yong
    Gao, Chun-lei
    Miao, Jin-lai
    Yao, Hui-lu
    Wang, Zong-ling
    ANALYTICAL METHODS, 2013, 5 (23) : 6870 - 6873
  • [27] The Application and Progress of Laser Tweezers Raman Spectroscopy in Biomedicine
    Li Zhi-hua
    Zheng Zu-ci
    Weng Cun-cheng
    Lin Duo
    Wang Qi-wen
    Feng Shang-yuan
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37 (04) : 1123 - 1129
  • [28] Raman spectroscopy differentiates between sensitive and resistant multiple myeloma cell lines
    Franco, Domenico
    Trusso, Sebastiano
    Fazio, Enza
    Allegra, Alessandro
    Musolino, Caterina
    Speciale, Antonio
    Cimino, Francesco
    Saija, Antonella
    Neri, Fortunato
    Nicolo, Marco S.
    Guglielmino, Salvatore P. P.
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2017, 187 : 15 - 22
  • [29] Identification of methicillin-resistant Staphylococcus aureus bacteria using surface-enhanced Raman spectroscopy and machine learning techniques
    Ciloglu, Fatma Uysal
    Saridag, Ayse Mine
    Kilic, Ibrahim Halil
    Tokmakci, Mahmut
    Kahraman, Mehmet
    Aydin, Omer
    ANALYST, 2020, 145 (23) : 7559 - 7570
  • [30] Employing Raman Spectroscopy and Machine Learning for the Identification of Breast Cancer
    Zhang, Ya
    Li, Zheng
    Li, Zhongqiang
    Wang, Huaizhi
    Regmi, Dinkar
    Zhang, Jian
    Feng, Jiming
    Yao, Shaomian
    Xu, Jian
    BIOLOGICAL PROCEDURES ONLINE, 2024, 26 (01)