Machine learning (ML) offers promising tools to develop surrogate models for polymers' structure-property relations. Surrogate models can be built upon existing polymer data and are useful for rapidly predicting the properties of unknown polymers. The accuracy of such ML models appears to depend on the feature space representation of polymers, the range of training data, and learning algorithms. Here, we establish connections between these factors for predicting the glass transition temperature (Tg) of polymers. Our analysis suggests linear models with fewer fitting parameters are as accurate as nonlinear models with many hidden and unexplainable parameters. Also, the performance of a monomer topology-based ML model is found to be qualitatively identical to that of a physicochemical descriptor-based ML model. We find that the ML models's performance in the extrapolative region is enhanced as the property range of the training data increases. Moreover, we establish new Tg - polymer chemistry correlations via ML. Our work illustrates how ML can advance the fundamental understanding of polymer structure-property correlations and its efficacy for extrapolation problems. image
机构:
Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing, Peoples R ChinaBeijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing, Peoples R China
Li, Dazi
Dong, Caibo
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing, Peoples R ChinaBeijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing, Peoples R China
Dong, Caibo
Chen, Zhudan
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing, Peoples R ChinaBeijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing, Peoples R China
Chen, Zhudan
Dong, Yining
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China
City Univ Hong Kong, Hong Kong Inst Data Sci, Ctr Syst Informat Engn, Hong Kong, Peoples R ChinaBeijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing, Peoples R China
Dong, Yining
Liu, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Chem Technol, Key Lab Beijing City Preparat & Proc Novel Polymer, Beijing, Peoples R ChinaBeijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing, Peoples R China
机构:
Taiyuan Univ Sci & Technol, Sch Mat Sci & Engn, Taiyuan 030024, Peoples R China
Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R ChinaTaiyuan Univ Sci & Technol, Sch Mat Sci & Engn, Taiyuan 030024, Peoples R China
Zhao, Jinbin
Wang, Jiantao
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R ChinaTaiyuan Univ Sci & Technol, Sch Mat Sci & Engn, Taiyuan 030024, Peoples R China
Wang, Jiantao
He, Dongchang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R ChinaTaiyuan Univ Sci & Technol, Sch Mat Sci & Engn, Taiyuan 030024, Peoples R China
He, Dongchang
Li, Junlin
论文数: 0引用数: 0
h-index: 0
机构:
Taiyuan Univ Sci & Technol, Sch Mat Sci & Engn, Taiyuan 030024, Peoples R ChinaTaiyuan Univ Sci & Technol, Sch Mat Sci & Engn, Taiyuan 030024, Peoples R China
Li, Junlin
Sun, Yan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R ChinaTaiyuan Univ Sci & Technol, Sch Mat Sci & Engn, Taiyuan 030024, Peoples R China
Sun, Yan
Chen, Xing-Qiu
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R ChinaTaiyuan Univ Sci & Technol, Sch Mat Sci & Engn, Taiyuan 030024, Peoples R China
Chen, Xing-Qiu
Liu, Peitao
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R ChinaTaiyuan Univ Sci & Technol, Sch Mat Sci & Engn, Taiyuan 030024, Peoples R China