Condensate cooperativity underlies transgenerational gene silencing

被引:9
|
作者
Du, Zhenzhen [1 ]
Shi, Kun [1 ]
Brown, Jordan S. [2 ]
He, Tao [1 ]
Wu, Wei-Sheng [3 ]
Zhang, Ying [1 ]
Lee, Heng-Chi [2 ]
Zhang, Donglei [1 ,2 ,4 ,5 ]
机构
[1] Huazhong Univ Sci & Technol, Tongji Med Coll, Sch Basic Med, Dept Biochem & Mol Biol, Wuhan 430032, Hubei, Peoples R China
[2] Univ Chicago, Dept Mol Genet & Cell Biol, Chicago, IL 60637 USA
[3] Natl Cheng Kung Univ, Dept Elect Engn, Tainan 701, Taiwan
[4] Huazhong Univ Sci & Technol, Cell Architecture Res Inst, Wuhan 430030, Hubei, Peoples R China
[5] Univ Chicago, Dept Mol Genet & Cell Biol, Chicago, IL 60637 USA
来源
CELL REPORTS | 2023年 / 42卷 / 08期
基金
中国国家自然科学基金;
关键词
MATERNAL MESSENGER-RNAS; DOUBLE-STRANDED-RNA; PROCESSING BODIES; CAJAL BODIES; GERM-CELLS; PROTEIN; BODY; GRANULES; COMPLEX; NUAGE;
D O I
10.1016/j.celrep.2023.112859
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Biomolecular condensates have been shown to interact in vivo, yet it is unclear whether these interactions are functionally meaningful. Here, we demonstrate that cooperativity between two distinct condensates-germ granules and P bodies-is required for transgenerational gene silencing in C. elegans. We find that P bodies form a coating around perinuclear germ granules and that P body components CGH-1/DDX6 and CAR-1/ LSM14 are required for germ granules to organize into sub-compartments and concentrate small RNA silencing factors. Functionally, while the P body mutant cgh-1 is competent to initially trigger gene silencing, it is unable to propagate the silencing to subsequent generations. Mechanistically, we trace this loss of transgenerational silencing to defects in amplifying secondary small RNAs and the stability of WAGO-4 Argonaute, both known carriers of gene silencing memories. Together, these data reveal that cooperation between condensates results in an emergent capability of germ cells to establish heritable memory.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] A nuclear pore-anchored condensate enables germ granule organization and transgenerational epigenetic inheritance
    Lu, Pu
    Deng, Boyuan
    Li, Xinru
    Niu, Xufang
    Qiu, Yanhong
    Liang, Yuntao
    Liang, Yonglin
    Tang, Guorun
    Yuan, Zhongping
    Luo, Guanzheng
    Kennedy, Scott
    Wan, Gang
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2025,
  • [42] Post-transcriptional gene silencing, transcriptional gene silencing and human immunodeficiency virus
    Catalina Méndez
    Chantelle L Ahlenstiel
    Anthony D Kelleher
    World Journal of Virology, 2015, (03) : 219 - 244
  • [43] Gene silencing as a threat to the success of gene therapy
    Bestor, TH
    JOURNAL OF CLINICAL INVESTIGATION, 2000, 105 (04): : 409 - 411
  • [44] Gene activation and gene silencing: A subtle equilibrium
    Quivy, V
    Calomme, C
    Dekoninck, A
    Demonte, D
    Bex, F
    Lamsoul, I
    Vanhulle, C
    Burny, A
    Van Lint, C
    CLONING AND STEM CELLS, 2004, 6 (02) : 140 - 149
  • [45] Gene silencing approaches for CNS gene therapy
    Wood, M
    JOURNAL OF GENE MEDICINE, 2004, 6 (09): : S36 - S36
  • [46] Nutrition and ageing: Gene silencing or gene activation
    Burzynski, S. R.
    ANNALS OF NUTRITION AND METABOLISM, 2007, 51 : 29 - 30
  • [47] Gene silencing in mammalian gametogenesis
    Bestor, TH
    Walsh, CP
    Yoder, JA
    DEVELOPMENTAL BIOLOGY, 1999, 210 (01) : 223 - 223
  • [48] RNAi - A guide to gene silencing
    van Rij, RP
    Andino, R
    SCIENCE, 2004, 303 (5666) : 1978 - 1979
  • [49] Epigenetic gene silencing in cancer
    Tycko, B
    JOURNAL OF CLINICAL INVESTIGATION, 2000, 105 (04): : 401 - 407
  • [50] Gene silencing in lymphocyte development
    Fisher, A
    Merkenschlager, M
    SEMINARS IN IMMUNOLOGY, 2005, 17 (02) : 103 - 103