Preliminary Assessment of the First-Order Density Matrix in Quantum Monte Carlo from Density Matrix Theory

被引:0
|
作者
Angelotti, Wagner F. D. [3 ]
Politi, Jose R. S. [1 ]
Custodio, Rogerio [2 ]
机构
[1] Univ Brasilia, Inst Chem, BR-79910900 Brasilia, DF, Brazil
[2] Univ Estadual Campinas, Inst Chem, Dept Phys Chem, BR-13083970 Campinas, SP, Brazil
[3] Univ Fed Triangulo Mineiro, Inst Exact & Technol Sci, Dept Appl Math, BR-38064200 Uberaba, MG, Brazil
基金
巴西圣保罗研究基金会;
关键词
MANY-PARTICLE SYSTEMS; TRIAL WAVE-FUNCTIONS; ENERGY FUNCTIONALS; SYMMETRY PROPERTIES; EXCHANGE; HARTREE; STABILITY; DILEMMA; STATES;
D O I
10.1021/acs.jctc.2c01174
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The trial wave function commonly used in the quantumMonte Carlomethod consists of the product of up-spin and down-spin Slater determinants,allowing accurate calculations of multielectronic properties, althoughit is not antisymmetric under the exchange of electrons with oppositespins. An alternative description that overcomes these limitationsusing the Nth-order density matrix was already presented.This study introduces two new strategies based on the Dirac-Fockdensity matrix for QMC that still fully preserve antisymmetry andelectron indistinguishability. Simulations are performed for the groundand excited states of He, Li, and Be showing that the present formulationand the conventional separation of spins are appropriate for a correctdescription of these systems, except for singlet excited states ofthe He and Be atoms, and that a part of the antisymmetry (antiparallelspins) can be neglected.
引用
收藏
页码:3861 / 3867
页数:7
相关论文
共 50 条
  • [1] Comments on the quantum Monte Carlo method and the density matrix theory
    Politi, JRD
    Custodio, R
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (11): : 4781 - 4783
  • [2] The Sign Problem in Density Matrix Quantum Monte Carlo
    Petras, Hayley R.
    Van Benschoten, William Z.
    Ramadugu, Sai Kumar
    Shepherd, James J.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (10) : 6036 - 6052
  • [3] Interaction picture density matrix quantum Monte Carlo
    Malone, Fionn D.
    Blunt, N. S.
    Shepherd, James J.
    Lee, D. K. K.
    Spencer, J. S.
    Foulkes, W. M. C.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (04):
  • [4] Density-matrix quantum Monte Carlo method
    Blunt, N. S.
    Rogers, T. W.
    Spencer, J. S.
    Foulkes, W. M. C.
    [J]. PHYSICAL REVIEW B, 2014, 89 (24):
  • [5] SPIN DEPENDENCE OF FIRST-ORDER TRANSITION DENSITY MATRIX
    BINGEL, WA
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1961, 34 (03): : 1066 - &
  • [6] Piecewise interaction picture density matrix quantum Monte Carlo
    van Benschoten, William Z.
    Shepherd, James J.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (18):
  • [7] Density matrix Monte Carlo modeling of quantum cascade lasers
    Jirauschek, Christian
    [J]. JOURNAL OF APPLIED PHYSICS, 2017, 122 (13)
  • [8] A study of the partitioning of the first-order reduced density matrix according to the theory of atoms in molecules
    Alcoba, DR
    Lain, L
    Torre, A
    Bochicchio, RC
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (14):
  • [9] Nonuniqueness of algebraic first-order density-matrix functionals
    Wang, Jian
    Knowles, Peter J.
    [J]. PHYSICAL REVIEW A, 2015, 92 (01):
  • [10] Energy density matrix formalism for interacting quantum systems: Quantum Monte Carlo study
    Krogel, Jaron T.
    Kim, Jeongnim
    Reboredo, Fernando A.
    [J]. PHYSICAL REVIEW B, 2014, 90 (03):