Energy density matrix formalism for interacting quantum systems: Quantum Monte Carlo study

被引:4
|
作者
Krogel, Jaron T. [1 ]
Kim, Jeongnim [1 ]
Reboredo, Fernando A. [1 ]
机构
[1] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
来源
PHYSICAL REVIEW B | 2014年 / 90卷 / 03期
关键词
2-DIMENSIONAL ELECTRON-GAS; COMPLEX SPECTRA; FERMI-LIQUID; EQUATION;
D O I
10.1103/PhysRevB.90.035125
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop an energy density matrix that parallels the one-body reduced density matrix (1RDM) for many-body quantum systems. Just as the density matrix gives access to the number density and occupation numbers, the energy density matrix yields the energy density and orbital occupation energies. The eigenvectors of the matrix provide a natural orbital partitioning of the energy density while the eigenvalues comprise a single-particle energy spectrum obeying a total energy sum rule. For mean-field systems the energy density matrix recovers the exact spectrum. When correlation becomes important, the occupation energies resemble quasiparticle energies in some respects. We explore the occupation energy spectrum for the finite 3D homogeneous electron gas in the metallic regime and an isolated oxygen atom with ground-state quantum Monte Carlo techniques implemented in the QMCPACK simulation code. The occupation energy spectrum for the homogeneous electron gas can be described by an effective mass below the Fermi level. Above the Fermi level evanescent behavior in the occupation energies is observed in similar fashion to the occupation numbers of the 1RDM. A direct comparison with total energy differences shows a quantitative connection between the occupation energies and electron addition and removal energies for the electron gas. For the oxygen atom, the association between the ground-state occupation energies and particle addition and removal energies becomes only qualitative. The energy density matrix provides an avenue for describing energetics with quantum Monte Carlo methods which have traditionally been limited to total energies.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Interacting lattice systems with quantum dissipation: A quantum Monte Carlo study
    Yan, Zheng
    Pollet, Lode
    Lou, Jie
    Wang, Xiaoqun
    Chen, Yan
    Cai, Zi
    [J]. PHYSICAL REVIEW B, 2018, 97 (03)
  • [2] Density Matrix Formalism for Interacting Quantum Fields
    Kaeding, Christian
    Pitschmann, Mario
    [J]. UNIVERSE, 2022, 8 (11)
  • [3] The Sign Problem in Density Matrix Quantum Monte Carlo
    Petras, Hayley R.
    Van Benschoten, William Z.
    Ramadugu, Sai Kumar
    Shepherd, James J.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (10) : 6036 - 6052
  • [4] Interaction picture density matrix quantum Monte Carlo
    Malone, Fionn D.
    Blunt, N. S.
    Shepherd, James J.
    Lee, D. K. K.
    Spencer, J. S.
    Foulkes, W. M. C.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (04):
  • [5] Density-matrix quantum Monte Carlo method
    Blunt, N. S.
    Rogers, T. W.
    Spencer, J. S.
    Foulkes, W. M. C.
    [J]. PHYSICAL REVIEW B, 2014, 89 (24):
  • [6] Quantum Monte Carlo with density matrix: potential energy curve derived properties
    Bonfim, Victor S.
    Borges, Nadia M.
    Martins, Joao B. L.
    Gargano, Ricardo
    Politi, Jose Roberto dos S.
    [J]. JOURNAL OF MOLECULAR MODELING, 2017, 23 (04)
  • [7] Quantum Monte Carlo with density matrix: potential energy curve derived properties
    Víctor S. Bonfim
    Nádia M. Borges
    João B. L. Martins
    Ricardo Gargano
    José Roberto dos S. Politi
    [J]. Journal of Molecular Modeling, 2017, 23
  • [8] Quantum energy density: Improved efficiency for quantum Monte Carlo calculations
    Krogel, Jaron T.
    Yu, Min
    Kim, Jeongnim
    Ceperley, David M.
    [J]. PHYSICAL REVIEW B, 2013, 88 (03)
  • [9] Interacting lattice systems with quantum dissipation: A quantum Monte Carlo study (vol 97, 035148, 2018)
    Yan, Zheng
    Pollet, Lode
    Lou, Jie
    Wang, Xiaoqun
    Chen, Yan
    Cai, Zi
    [J]. PHYSICAL REVIEW B, 2023, 108 (19)
  • [10] Quantum Monte Carlo study of entanglement in quantum spin systems
    Roscilde, T
    Verrucchi, P
    Fubini, A
    Haas, S
    Tognetti, V
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2005, 140 (3-4) : 293 - 302