Interpretable deep learning for diagnosis of fungal and acanthamoeba keratitis using in vivo confocal microscopy images

被引:18
|
作者
Essalat, Mahmoud [1 ]
Abolhosseini, Mohammad [2 ,3 ]
Le, Thanh Huy [4 ]
Moshtaghion, Seyed Mohamadmehdi [2 ,3 ]
Kanavi, Mozhgan Rezaei [2 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Elect & Comp Engn, 56-125B Engn 4Building, UCLA, 420 Westwood Plaza, Los Angeles, CA 90095 USA
[2] Shahid Beheshti Univ Med Sci, Res Inst Ophthalmol & Vis Sci, Ocular Tissue Engn Res Ctr, 23, Paidarfard St, Boostan 9 St, Pasdaran Ave, Tehran 1666673111, Iran
[3] Cent Eye Bank Iran, Dept Confocal Scan, Tehran, Iran
[4] Univ Calif San Diego, Dept Comp Sci, San Diego, CA USA
关键词
MICROBIAL KERATITIS;
D O I
10.1038/s41598-023-35085-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Infectious keratitis refers to a group of corneal disorders in which corneal tissues suffer inflammation and damage caused by pathogenic infections. Among these disorders, fungal keratitis (FK) and acanthamoeba keratitis (AK) are particularly severe and can cause permanent blindness if not diagnosed early and accurately. In Vivo Confocal Microscopy (IVCM) allows for imaging of different corneal layers and provides an important tool for an early and accurate diagnosis. In this paper, we introduce the IVCM-Keratitis dataset, which comprises of a total of 4001 sample images of AK and FK, as well as non-specific keratitis (NSK) and healthy corneas classes. We use this dataset to develop multiple deep-learning models based on Convolutional Neural Networks (CNNs) to provide automated assistance in enhancing the diagnostic accuracy of confocal microscopy in infectious keratitis. Densenet161 had the best performance among these models, with an accuracy, precision, recall, and F1 score of 93.55%, 92.52%, 94.77%, and 96.93%, respectively. Our study highlights the potential of deep learning models to provide automated diagnostic assistance for infectious keratitis via confocal microscopy images, particularly in the early detection of AK and FK. The proposed model can provide valuable support to both experienced and inexperienced eye-care practitioners in confocal microscopy image analysis, by suggesting the most likely diagnosis. We further demonstrate that these models can highlight the areas of infection in the IVCM images and explain the reasons behind their diagnosis by utilizing saliency maps, a technique used in eXplainable Artificial Intelligence (XAI) to interpret these models.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] In vivo confocal microscopy of equine fungal keratitis
    Ledbetter, Eric C.
    Irby, Nita L.
    Kim, Sung G.
    VETERINARY OPHTHALMOLOGY, 2011, 14 (01) : 1 - 9
  • [22] IN-VIVO, REAL-TIME CONFOCAL MICROSCOPY OF FUNGAL, BACTERIAL, AND ACANTHAMOEBA-KERATITIS
    KAUFMAN, SC
    BEUERMAN, RW
    LAIRD, J
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1995, 36 (04) : S1022 - S1022
  • [23] Role of Confocal Microscopy in Deep Fungal Keratitis
    Das, Sujata
    Samant, Monica
    Garg, Prashant
    Vaddavalli, Pravin Krishna
    Vennuganti, Geeta K.
    CORNEA, 2009, 28 (01) : 11 - 13
  • [24] Comparison of In Vivo Confocal Microscopy, PCR and Culture of Corneal Scrapes in the Diagnosis of Acanthamoeba Keratitis
    Goh, Joanne W. Y.
    Harrison, Rhys
    Hau, Scott
    Alexander, Claire L.
    Tole, Derek M.
    Avadhanam, Venkata S.
    CORNEA, 2018, 37 (04) : 480 - 485
  • [25] In vivo confocal microscopy in the diagnosis and management of acanthamoeba keratitis showing new cystic forms
    Alomar, Thaer
    Matthew, Manu
    Donald, Fiona
    Maharajan, Senthil
    Dua, Harminder S.
    CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2009, 37 (07): : 737 - 739
  • [26] In Vivo and In Vitro Laser Confocal Microscopy to Diagnose Acanthamoeba Keratitis
    Shiraishi, Atsushi
    Uno, Toshihiko
    Oka, Naoko
    Hara, Yuko
    Yamaguchi, Masahiko
    Ohashi, Yuichi
    CORNEA, 2010, 29 (08) : 861 - 865
  • [27] A new in vivo confocal microscopy prognostic factor in Acanthamoeba keratitis
    Zhang, X.
    Sun, X.
    Jiang, C.
    Wang, Z.
    Zhang, Y.
    Deng, S.
    Labbe, A.
    JOURNAL FRANCAIS D OPHTALMOLOGIE, 2014, 37 (02): : 130 - 137
  • [28] Diagnostic features of Acanthamoeba keratitis via in vivo confocal microscopy
    Przybek-Skrzypecka, Joanna
    Armstrong, Malcolm
    Kim, Jennifer
    Walkden, Andrew
    Au, Leon
    Brahma, Arun
    Carley, Fiona
    Chidambaram, Jaya Devi
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [29] Two-stage deep neural network for diagnosing fungal keratitis via in vivo confocal microscopy images
    Li, Chun-Peng
    Dai, Weiwei
    Xiao, Yun-Peng
    Qi, Mengying
    Zhang, Ling-Xiao
    Gao, Lin
    Zhang, Fang-Lue
    Lai, Yu-Kun
    Liu, Chang
    Lu, Jing
    Chen, Fen
    Chen, Dan
    Shi, Shuai
    Li, Shaowei
    Zeng, Qingyan
    Chen, Yiqiang
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [30] Confocal Microscopy for Diagnosis of Acanthamoeba Keratitis: Nidek versus Heidelberg
    Golen, Jeffrey Ryan y
    Keenan, Jeremy D.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2015, 56 (07)