Interpretable deep learning for diagnosis of fungal and acanthamoeba keratitis using in vivo confocal microscopy images

被引:11
|
作者
Essalat, Mahmoud [1 ]
Abolhosseini, Mohammad [2 ,3 ]
Le, Thanh Huy [4 ]
Moshtaghion, Seyed Mohamadmehdi [2 ,3 ]
Kanavi, Mozhgan Rezaei [2 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Elect & Comp Engn, 56-125B Engn 4Building, UCLA, 420 Westwood Plaza, Los Angeles, CA 90095 USA
[2] Shahid Beheshti Univ Med Sci, Res Inst Ophthalmol & Vis Sci, Ocular Tissue Engn Res Ctr, 23, Paidarfard St, Boostan 9 St, Pasdaran Ave, Tehran 1666673111, Iran
[3] Cent Eye Bank Iran, Dept Confocal Scan, Tehran, Iran
[4] Univ Calif San Diego, Dept Comp Sci, San Diego, CA USA
关键词
MICROBIAL KERATITIS;
D O I
10.1038/s41598-023-35085-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Infectious keratitis refers to a group of corneal disorders in which corneal tissues suffer inflammation and damage caused by pathogenic infections. Among these disorders, fungal keratitis (FK) and acanthamoeba keratitis (AK) are particularly severe and can cause permanent blindness if not diagnosed early and accurately. In Vivo Confocal Microscopy (IVCM) allows for imaging of different corneal layers and provides an important tool for an early and accurate diagnosis. In this paper, we introduce the IVCM-Keratitis dataset, which comprises of a total of 4001 sample images of AK and FK, as well as non-specific keratitis (NSK) and healthy corneas classes. We use this dataset to develop multiple deep-learning models based on Convolutional Neural Networks (CNNs) to provide automated assistance in enhancing the diagnostic accuracy of confocal microscopy in infectious keratitis. Densenet161 had the best performance among these models, with an accuracy, precision, recall, and F1 score of 93.55%, 92.52%, 94.77%, and 96.93%, respectively. Our study highlights the potential of deep learning models to provide automated diagnostic assistance for infectious keratitis via confocal microscopy images, particularly in the early detection of AK and FK. The proposed model can provide valuable support to both experienced and inexperienced eye-care practitioners in confocal microscopy image analysis, by suggesting the most likely diagnosis. We further demonstrate that these models can highlight the areas of infection in the IVCM images and explain the reasons behind their diagnosis by utilizing saliency maps, a technique used in eXplainable Artificial Intelligence (XAI) to interpret these models.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [1] Interpretable deep learning for diagnosis of fungal and acanthamoeba keratitis using in vivo confocal microscopy images
    Mahmoud Essalat
    Mohammad Abolhosseini
    Thanh Huy Le
    Seyed Mohamadmehdi Moshtaghion
    Mozhgan Rezaei Kanavi
    Scientific Reports, 13
  • [2] Combined fungal and acanthamoeba keratitis: diagnosis by in vivo confocal microscopy
    K Babu
    K R Murthy
    Eye, 2007, 21 : 271 - 272
  • [3] Deep learning-based automated diagnosis of fungal keratitis with in vivo confocal microscopy images
    Lv, Jian
    Zhang, Kai
    Chen, Qing
    Chen, Qi
    Huang, Wei
    Cui, Ling
    Li, Min
    Li, Jianyin
    Chen, Lifei
    Shen, Chaolan
    Yang, Zhao
    Bei, Yixuan
    Li, Lanjian
    Wu, Xiaohang
    Zeng, Siming
    Xu, Fan
    Lin, Haotian
    ANNALS OF TRANSLATIONAL MEDICINE, 2020, 8 (11)
  • [4] Role of Confocal Microscopy in the Diagnosis of Fungal and Acanthamoeba Keratitis
    Vaddavalli, Pravin K.
    Garg, Prashant
    Sharma, Savitri
    Sangwan, Virender S.
    Rao, Gullapalli N.
    Thomas, Ravi
    OPHTHALMOLOGY, 2011, 118 (01) : 29 - 35
  • [5] The Clinical Value of Explainable Deep Learning for Diagnosing Fungal Keratitis Using in vivo Confocal Microscopy Images
    Xu, Fan
    Jiang, Li
    He, Wenjing
    Huang, Guangyi
    Hong, Yiyi
    Tang, Fen
    Lv, Jian
    Lin, Yunru
    Qin, Yikun
    Lan, Rushi
    Pan, Xipeng
    Zeng, Siming
    Li, Min
    Chen, Qi
    Tang, Ningning
    FRONTIERS IN MEDICINE, 2021, 8
  • [6] DIAGNOSIS OF ACANTHAMOEBA-KERATITIS IN-VIVO USING CONFOCAL MICROSCOPY
    WINCHESTER, K
    MATHERS, WD
    SUTPHIN, JE
    DALEY, TE
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1994, 35 (04) : 1673 - 1673
  • [7] In vivo confocal microscopy and Acanthamoeba keratitis
    Cavanagh, HD
    McCulley, JP
    AMERICAN JOURNAL OF OPHTHALMOLOGY, 1996, 121 (02) : 207 - 208
  • [8] DIAGNOSIS OF ACANTHAMOEBA-KERATITIS IN-VIVO WITH CONFOCAL MICROSCOPY
    WINCHESTER, K
    MATHERS, WD
    SUTPHIN, JE
    DALEY, TE
    CORNEA, 1995, 14 (01) : 10 - 17
  • [9] Development and Assessment of a Simulator for in Vivo Confocal Microscopy in Fungal and Acanthamoeba Keratitis
    Roth, M.
    Daas, L.
    MacKenzie, C. R.
    Balasiu, A.
    Stachon, T.
    Neumann, I
    Steindor, F.
    Seitz, B.
    Geerling, G.
    CURRENT EYE RESEARCH, 2020, 45 (12) : 1484 - 1489
  • [10] In vivo confocal microscopy: A new tool for the diagnosis of Acanthamoeba keratitis
    Grise-Dulac, A.
    Brasnu, E.
    Goldchmidt, P.
    Dupas, B.
    Labbe, A.
    Borderie, V.
    Borsali, E.
    Chaumeil, C.
    Baudouin, C.
    JOURNAL FRANCAIS D OPHTALMOLOGIE, 2010, 33 (06): : 383 - 390