Comparative life cycle analysis of critical materials recovery from spent Li-ion batteries

被引:10
|
作者
Mousavinezhad, Seyedkamal [1 ]
Kadivar, Saeede [1 ]
Vahidi, Ehsan [1 ]
机构
[1] Univ Nevada, Mackay Sch Earth Sci & Engn, Dept Min & Met Engn, Reno, NV 89557 USA
关键词
Lithium-ion batteries; Battery recycling; Lithium recovering; Life cycle assessment; Hydrometalurgy; LITHIUM-ION; VALUABLE METALS; HYDROMETALLURGICAL PROCESS; SOLVENT-EXTRACTION; ORGANIC-ACIDS; PROCESS OPTIMIZATION; SUSTAINABLE PROCESS; LEACHING REAGENTS; TARTARIC ACID; CITRIC-ACID;
D O I
10.1016/j.jenvman.2023.117887
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The development of new generations of electric vehicles is expected to drive the growth of lithium-ion batteries in the global market. Life Cycle Assessment (LCA) method was utilized in this study to evaluate the environ-mental impacts of various hydrometallurgical processes in critical materials recovery from lithium-ion battery (LIB) cathode powder. The main objective of this work was to fill the knowledge gap regarding the environ-mental sustainability of various processes in LIB recycling and to generate a comprehensive comparison of the environmental burdens caused by numerous hydrometallurgical methods. According to this investigation, leaching with acetic acid, formic acid, maleic acid, and DL-malic acid demonstrates lower environmental impacts compared to lactic acid, ascorbic acid, succinic acid, citric acid, trichloroacetic acid, and tartaric acid. Among inorganic acids, nitric acid and hydrochloric acid show higher environmental impacts compared to sulfuric acid. Furthermore, the results of this study indicate that leaching with some organic acids such as citric, succinic, ascorbic, trichloroacetic, and tartaric acids leads to higher negative environmental impacts in most environ-mental categories compared to inorganic acids like sulfuric and hydrochloric acid. Therefore, not all organic acids utilized in the leaching of critical and strategic materials from cathode powder can enhance environmental sustainability in the recycling process. The results of the solvent extraction study as a downstream process of leaching show that sodium hydroxide, organic reagents, and kerosene have the highest environmental impact among all inputs in this process. Generally, solvent extraction has a greater environmental impact compared to the leaching process.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Cobalt recovery from spent Li-ion batteries using lactic acid as dissolution agent
    Santhosh, G.
    Nayaka, G. P.
    CLEANER ENGINEERING AND TECHNOLOGY, 2021, 3
  • [22] Critical materials for electrical energy storage: Li-ion batteries
    Lebrouhi, B. E.
    Baghi, S.
    Lamrani, B.
    Schall, E.
    Kousksou, T.
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [23] A generalized cycle life model of rechargeable Li-ion batteries
    Ning, G
    White, RE
    Popov, BN
    ELECTROCHIMICA ACTA, 2006, 51 (10) : 2012 - 2022
  • [24] Recovery of Li and Co from Spent Li-Ion Batteries by Mechanochemical Integration with NH4Cl
    Zhang, Siyu
    Zhang, Chenglong
    Zhang, Xihua
    Ma, En
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (17) : 5611 - 5620
  • [25] Recovery of Co and Li from spent lithium ion batteries
    Dong, Peng (dongpeng2001@126.com), 1600, Materials China (36):
  • [26] Li-ion Capacitor via Solvent-Co-Intercalation Process from Spent Li-ion Batteries
    Divya, Madhusoodhanan Lathika
    Lee, Yun-Sung
    Aravindan, Vanchiappan
    BATTERIES & SUPERCAPS, 2021, 4 (04) : 671 - 679
  • [27] Effect of Na from the leachate of spent Li-ion batteries on the properties of resynthesized Li-ion battery cathodes
    Beak, Mincheol
    Park, Sanghyuk
    Kim, Sangjun
    Park, Jangho
    Jeong, Seongdeock
    Thirumalraj, Balamurugan
    Jeong, Goojin
    Kim, Taehyeon
    Kwon, Kyungjung
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 873
  • [28] Hydrometallurgical Process to Recover Cobalt from Spent Li-Ion Batteries
    Djoudi, Neila
    Mostefa, Marie Le Page
    Muhr, Herve
    RESOURCES-BASEL, 2021, 10 (06):
  • [29] Recovery of metals from electroactive components of spent Li-ion batteries after leaching with formic acid
    Zeba, Guido Tande Crespo
    Paulino, Jessica Frontino
    Afonso, Julio Carlos
    BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2022, 39 (01) : 147 - 158
  • [30] Recovery of Co, Li, and Ni from Spent Li-Ion Batteries by the Inorganic and/or Organic Reducer Assisted Leaching Method
    Urbanska, Weronika
    MINERALS, 2020, 10 (06) : 1 - 13