TRAVERSING A GRAPH IN GENERAL POSITION

被引:7
|
作者
Klavzar, Sandi [1 ,2 ,3 ]
Krishnakumar, Aditi [4 ]
Tuite, James [4 ]
Yero, Ismael G. [5 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
[3] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[4] Open Univ, Dept Math & Stat, Milton Keynes, England
[5] Univ Cadiz, Dept Matemat, Algeciras, Spain
基金
英国工程与自然科学研究理事会;
关键词
general position set; mobile general position set; mobile general position number; robot navigation; unicyclic graph; Kneser graph;
D O I
10.1017/S0004972723000102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph. Assume that to each vertex of a set of vertices S subset of V(G) a robot is assigned. At each stage one robot can move to a neighbouring vertex. Then S is a mobile general position set of G if there exists a sequence of moves of the robots such that all the vertices of G are visited while maintaining the general position property at all times. The mobile general position number of G is the cardinality of a largest mobile general position set of G. We give bounds on the mobile general position number and determine exact values for certain common classes of graphs, including block graphs, rooted products, unicyclic graphs, Kneser graphs K(n, 2) and line graphs of complete graphs.
引用
收藏
页码:353 / 365
页数:13
相关论文
共 50 条
  • [41] A GENERAL FRAMEWORK FOR GRAPH SPARSIFICATION
    Fung, Wai-Shing
    Hariharan, Ramesh
    Harvey, Nicholas J. A.
    Panigrahi, Debmalya
    SIAM JOURNAL ON COMPUTING, 2019, 48 (04) : 1196 - 1223
  • [42] GRAPH ISOMORPHISM - GENERAL REMARKS
    MILLER, GL
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1979, 18 (02) : 128 - 142
  • [43] A General Framework for Graph Sparsification
    Fung, Wai Shing
    Hariharan, Ramesh
    Harvey, Nicholas J. A.
    Panigrahi, Debmalya
    STOC 11: PROCEEDINGS OF THE 43RD ACM SYMPOSIUM ON THEORY OF COMPUTING, 2011, : 71 - 80
  • [44] Circular General Position Solution
    Schmeichel, Edward
    Chapman, R.
    Ionin, Y. J.
    Lossers, O. P.
    Monea, M.
    Prasad, M. A.
    Smith, J. C.
    Stong, R.
    Weinstein, E. A.
    AMERICAN MATHEMATICAL MONTHLY, 2017, 124 (01): : 86 - 86
  • [45] GENERAL POSITION OF EQUIVARIANT MAPS
    BIERSTONE, E
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 234 (02) : 447 - 466
  • [46] Distinct angles in general position
    Fleischmann, Henry L.
    Konyagin, Sergei V.
    Miller, Steven J.
    Palsson, Eyvindur A.
    Pesikoff, Ethan
    Wolf, Charles
    DISCRETE MATHEMATICS, 2023, 346 (04)
  • [47] The Edge General Position Problem
    Paul Manuel
    R. Prabha
    Sandi Klavžar
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 2997 - 3009
  • [48] Point processes in general position
    H. Zessin
    Journal of Contemporary Mathematical Analysis, 2008, 43 : 59 - 65
  • [49] Point Processes in General Position
    Zessin, H.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2008, 43 (01): : 59 - 65
  • [50] A Generic Algorithm for Traversing a Directed Acyclic Graph: An Application to the Home Health Care Scheduling Problem
    Chaieb, Marouene
    Jemai, Jaber
    Ben Sassi, Dhekra
    Mellouli, Khaled
    IETE JOURNAL OF RESEARCH, 2024, 70 (01) : 257 - 268