TRAVERSING A GRAPH IN GENERAL POSITION

被引:7
|
作者
Klavzar, Sandi [1 ,2 ,3 ]
Krishnakumar, Aditi [4 ]
Tuite, James [4 ]
Yero, Ismael G. [5 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
[3] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[4] Open Univ, Dept Math & Stat, Milton Keynes, England
[5] Univ Cadiz, Dept Matemat, Algeciras, Spain
基金
英国工程与自然科学研究理事会;
关键词
general position set; mobile general position set; mobile general position number; robot navigation; unicyclic graph; Kneser graph;
D O I
10.1017/S0004972723000102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph. Assume that to each vertex of a set of vertices S subset of V(G) a robot is assigned. At each stage one robot can move to a neighbouring vertex. Then S is a mobile general position set of G if there exists a sequence of moves of the robots such that all the vertices of G are visited while maintaining the general position property at all times. The mobile general position number of G is the cardinality of a largest mobile general position set of G. We give bounds on the mobile general position number and determine exact values for certain common classes of graphs, including block graphs, rooted products, unicyclic graphs, Kneser graphs K(n, 2) and line graphs of complete graphs.
引用
收藏
页码:353 / 365
页数:13
相关论文
共 50 条
  • [1] Traversing the machining graph
    Chen, Danny Z.
    Fleischer, Rudolf
    Li, Jian
    Wang, Haitao
    Zhu, Hong
    ALGORITHMS - ESA 2006, PROCEEDINGS, 2006, 4168 : 220 - 231
  • [2] A GENERAL POSITION PROBLEM IN GRAPH THEORY
    Manuel, Paul
    Klavzar, Sandi
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 98 (02) : 177 - 187
  • [3] A Steiner general position problem in graph theory
    Sandi Klavžar
    Dorota Kuziak
    Iztok Peterin
    Ismael G. Yero
    Computational and Applied Mathematics, 2021, 40
  • [4] A Steiner general position problem in graph theory
    Klavzar, Sandi
    Kuziak, Dorota
    Peterin, Iztok
    Yero, Ismael G.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (06):
  • [5] Traversing the machining graph of a pocket
    Tang, K
    Joneja, A
    COMPUTER-AIDED DESIGN, 2003, 35 (11) : 1023 - 1040
  • [6] The iteration time and the general position number in graph convexities
    Araujo, Julio
    Dourado, Mitre C.
    Protti, Fábio
    Sampaio, Rudini
    Applied Mathematics and Computation, 2025, 487
  • [7] THE GENERAL POSITION PROBLEM ON KNESER GRAPHS AND ON SOME GRAPH OPERATIONS
    Ghorbani, Modjtaba
    Maimani, Hamid Reza
    Momeni, Mostafa
    Mahid, Farhad Rahimi
    Klavzar, Sandi
    Rus, Gregor
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (04) : 1199 - 1213
  • [8] Argumentative Discourse Concepts as Revealed by Traversing a Graph
    Gourgaris, Panagiotis
    Kanavos, Andreas
    Karacapilidis, Nikos
    Tampakas, Vassilis
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2018, 2018, 520 : 123 - 132
  • [9] The Graph Theory General Position Problem on Some Interconnection Networks
    Manuel, Paul
    Klavzar, Sandi
    FUNDAMENTA INFORMATICAE, 2018, 163 (04) : 339 - 350
  • [10] Application of Graph Traversing Algorithm for Library Guide
    Sun, Xiaochao
    Yuan, Chuanling
    Yang, Bin
    2017 6TH INTERNATIONAL CONFERENCE ON APPLIED SOCIAL SCIENCE (ICASS 2017), PT 1, 2017, 97 : 557 - 560