Study of poly (organic palygorskite-methyl methacrylate)/poly(vinylidene fluoride-co-hexafluoropropylene) blended gel polymer electrolyte for lithium-ion batteries

被引:1
|
作者
Yuan, Ge [1 ,2 ,3 ,4 ]
Guo, Haijun [1 ,2 ,3 ]
Bo, Li [1 ,2 ,3 ,4 ]
Wang, Mengkun [1 ,2 ,3 ]
Zhang, Hairong [1 ,2 ,3 ]
Chen, Xinde [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Guangzhou Inst Energy Convers, Guangzhou 510640, Peoples R China
[2] Chinese Acad Sci, Key Lab Renewable Energy, Guangzhou 510640, Peoples R China
[3] R&D Ctr Xuyi Attapulgite Energy & Environm Mat, Xuyi 211700, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Gel polymer electrolyte; Lithium ion battery; Poly(vinylidene fluoride-co-hexafluoropropylene); ELECTROCHEMICAL PERFORMANCE; PHASE INVERSION; HIGH-SAFETY; COMPOSITE; CONDUCTIVITY; SEPARATOR; MEMBRANE; NANOPARTICLES; MATRIX;
D O I
10.1007/s10008-022-05339-z
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The composite membrane (PDFP-POPM) based on the blending of poly(vinylidene fluoride-co-hexafluoropropylene) (PDFP) and POPM (the copolymer of organic palygorskite and methyl methacrylate) was prepared by the phase-inversion method, and a gel polymer electrolyte (GPE) was obtained when the PDFP-POPM was activated by absorbing liquid electrolyte (LE). The SEM morphologies showed that the PDFP-POPM had a porous structure. The XRD results indicated that PDFP-POPM was an amorphous polymer and that the POPM could effectively suppress the crystallization of PDFP. The lithium ion transference number of GPE was higher than that of pristine POPM- and PDFP-based GPE. When the mass concentration of PDFP was 40%, the uptake of the PDFP-POPM and ionic conductivity of GPE reached the maximum values of 164% and 2.37 mS/cm, respectively. The electrochemical stability window of Li/GPE/SS batteries was over 4.7 V (vs. Li+/Li), and the Li/40PDFP-POPM GPE/LiFePO4 battery exhibited good cycling performance. The discharge capacity of the battery was 145mAh g(-1) after 100 cycles and the columbic efficiency was over 95%.
引用
收藏
页码:455 / 465
页数:11
相关论文
共 50 条
  • [31] Poly(vinylidene fluoride-co-hexafluoropropylene) nanocomposites incorporating cellulose nanocrystals with potential applications in lithium ion batteries
    Kelley, Jeremiah
    Simonsen, John
    Ding, Jie
    Journal of Applied Polymer Science, 2013, 127 (01): : 487 - 493
  • [32] Electrospun poly(vinylidene fluoride)/poly(methyl methacrylate) grafted TiO2 composite nanofibrous membrane as polymer electrolyte for lithium-ion batteries
    Cui, Wei-Wei
    Tang, Dong-Yan
    Gong, Zai-Lin
    JOURNAL OF POWER SOURCES, 2013, 223 : 206 - 213
  • [33] Poly(vinylidene fluoride-co-hexafluoropropylene) nanocomposites incorporating cellulose nanocrystals with potential applications in lithium ion batteries
    Kelley, Jeremiah
    Simonsen, John
    Ding, Jie
    JOURNAL OF APPLIED POLYMER SCIENCE, 2013, 127 (01) : 487 - 493
  • [34] Boosting the performance of poly(ethylene oxide)-based solid polymer electrolytes by blending with poly(vinylidene fluoride-co-hexafluoropropylene) for solid-state lithium-ion batteries
    Li, Jialun
    Zhu, Lin
    Xu, Jianing
    Jing, Maoxiang
    Yao, Shanshan
    Shen, Xiangqian
    Li, Songjun
    Tu, Feiyue
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (09) : 7831 - 7840
  • [35] New method for the preparation of solid polymer electrolyte based on poly(vinylidene fluoride-co-hexafluoropropylene)
    Kim, T
    Kang, IJ
    Cho, G
    Park, KP
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2005, 22 (02) : 234 - 237
  • [36] Synergistic Advancements of Acrylate-Grafted Poly(vinylidene Fluoride-co-hexafluoropropylene) Gel Polymer Electrolytes for Lithium-ion BatteriesSynergistic Advancements of Acrylate-Grafted Poly(vinylidene Fluoride-co-hexafluoropropylene)…T. Kumutha, M. Abdul Kader
    T. Kumutha
    M. Abdul Kader
    Journal of Electronic Materials, 2025, 54 (2) : 1165 - 1176
  • [37] High-Performance Electrospun Poly(vinylidene fluoride)/Poly(propylene carbonate) Gel Polymer Electrolyte for Lithium-Ion Batteries
    Huang, Xueyan
    Zeng, Songshan
    Liu, Jingjing
    He, Ting
    Sun, Luyi
    Xu, Donghui
    Yu, Xiaoyuan
    Luo, Ying
    Zhou, Wuyi
    Wu, Jianfeng
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (50): : 27882 - 27891
  • [38] Study of a novel porous gel polymer electrolyte based on thermoplastic polyurethane/poly(vinylidene fluoride-co-hexafluoropropylene) by electrospinning technique
    Zhou, Ling
    Cao, Qi
    Jing, Bo
    Wang, Xianyou
    Tang, Xiaoli
    Wu, Na
    JOURNAL OF POWER SOURCES, 2014, 263 : 118 - 124
  • [39] Electrospun poly (vinylidene fluoride)/poly (methyl methacrylate) composite nanofibers polymer electrolyte for batteries
    Mahant, Yogita P.
    Kondawar, Subhash B.
    Bhute, Monali
    Nandanwar, D. V.
    2ND INTERNATIONAL CONFERENCE ON NANOMATERIALS AND TECHNOLOGIES (CNT 2014), 2015, 10 : 595 - 602
  • [40] Sodium ion conducting gel polymer electrolyte using poly(vinylidene fluoride hexafluoropropylene)
    Duy Thanh Vo
    Hoang Nguyen Do
    Thien Trung Nguyen
    Thi Tuyet Hanh Nguyen
    Van Man Tran
    Okada, Shigeto
    My Loan Phung Le
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2019, 241 : 27 - 35