A low-carbon polygeneration system based on a waste heat recovery system, a LNG cold energy process, and a CO2 liquefaction and separation unit

被引:11
|
作者
Ghasemi, Amir [1 ,3 ]
Rad, Hima Nikafshan [2 ,3 ]
Golizadeh, Farid [4 ]
机构
[1] Monash Univ, Sch Engn, Dept Civil Engn, Clayton Campus, Melbourne, Australia
[2] Griffith Univ, Sch Informat & Commun Technol, Nathan, Qld, Australia
[3] SavvyScience Tech Pty Ltd, Melbourne, Vic 3752, Australia
[4] Islamic Azad Univ, Fac Sci, Dept Phys Chem, Ardebil Branch, Ardebil, Iran
关键词
low-carbon system; polygeneration system; waste heat recovery; LNG cold energy; CO2 liquefaction and separation; OXIDE FUEL-CELL; MULTIOBJECTIVE OPTIMIZATION; BIOMASS GASIFICATION; RANKINE-CYCLE; POWER-PLANT; SOLAR; PERFORMANCE; HYDROGEN; EMISSION; TURBINE;
D O I
10.1093/ijlct/ctad146
中图分类号
O414.1 [热力学];
学科分类号
摘要
Development of the multigeneration plants based on the simultaneous production of water and energy can solve many of the current problems of these two major fields. In addition, the integration of fossil power plants with waste heat recovery processes in order to prevent the release of pollutants in the environment can simultaneously cover the environmental and thermodynamic improvements. Besides, the addition of a carbon dioxide (CO2) capturing cycles with such plants is a key issue towards a sustainable environment. Accordingly, a novel waste heat recovery-based multigeneration plant integrated with a carbon dioxide separation/liquefaction cycle is proposed and investigated under multi-variable assessments (energy/exergy, financial, and environmental). The offered multigeneration system is able to generate various beneficial outputs (electricity, liquefied CO2 (L-CO2), natural gas (NG), and freshwater). In the offered system, the liquified natural gas (LNG) cold energy is used to carry out condensation processes, which is a relatively new idea. Based on the results, the outputs rates of net power, NG, L-CO2, and water were determined to be approximately 42.72 MW and 18.01E+03, 612 and 3.56E+03 kmol/h, respectively. Moreover, the multigeneration plant was efficient about 32.08% and 87.72%, respectively, in terms of energy and exergy. Economic estimates indicated that the unit product costs of electricity and liquefied carbon dioxide production, respectively, were around 0.0466 USD per kWh and 0.0728 USD per kg-CO2. Finally, the total released CO2 was about 0.034 kg per kWh. According to a comprehensive comparison, the offered multigeneration plant can provide superior environmental, thermodynamic, and economic performances compared to similar plants. Moreover, there was no need to purchase electricity from the grid.
引用
收藏
页码:654 / 666
页数:13
相关论文
共 50 条
  • [21] Process design and thermoeconomic evaluation of a CO2 liquefaction process driven by waste exhaust heat recovery for an industrial CO2 capture and utilization plant
    Reza Shirmohammadi
    Alireza Aslani
    Roghayeh Ghasempour
    Luis M. Romeo
    Fontina Petrakopoulou
    Journal of Thermal Analysis and Calorimetry, 2021, 145 : 1585 - 1597
  • [22] Process design and thermoeconomic evaluation of a CO2 liquefaction process driven by waste exhaust heat recovery for an industrial CO2 capture and utilization plant
    Shirmohammadi, Reza
    Aslani, Alireza
    Ghasempour, Roghayeh
    Romeo, Luis M.
    Petrakopoulou, Fontina
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 145 (03) : 1585 - 1597
  • [23] An integrated solution of energy storage and CO2 reduction: Trans-critical CO2 energy storage system combining carbon capture with LNG cold energy
    Yin, Liang
    Ju, Yonglin
    Lin, Qianguo
    JOURNAL OF CLEANER PRODUCTION, 2024, 482
  • [24] Novel process design for waste energy recovery of LNG power plants for CO2 capture and storage
    Lim, Jonghun
    Kim, Yurim
    Cho, Hyungtae
    Lee, Jaewon
    Kim, Junghwan
    ENERGY CONVERSION AND MANAGEMENT, 2023, 277
  • [25] Natural gas liquefaction system with activated MDEA method for CO2 removal based on waste heat utilization
    He T.
    Lin W.
    Huagong Xuebao/CIESC Journal, 2021, 72 : 453 - 460
  • [26] Design and analysis of steam methane reforming hydrogen liquefaction and waste heat recovery system based on liquefied natural gas cold energy
    Qiao, Yan
    Jiang, Wenquan
    Li, Yang
    Dong, Xiaoxiao
    Yang, Fan
    ENERGY, 2024, 302
  • [27] Thermodynamic analysis of supercritical CO2 power generation system for waste heat recovery with impurities in CO2
    Park, Joo Hyun
    APPLIED THERMAL ENGINEERING, 2025, 258
  • [28] 4E analysis of the cryogenic CO2 separation process integrated with waste heat recovery
    Nandakishora, Y.
    Sahoo, Ranjit K.
    Murugan, S.
    Gu, Sai
    ENERGY, 2023, 278
  • [29] Optimization of a CO2-based Shipboard Waste Heat Recovery System
    Baik, Young-Jin
    Shin, Hyung-Ki
    Lee, Gilbong
    Cho, Junhyun
    Lee, Beomjoon
    Roh, Chul Woo
    OCEANS 2016 MTS/IEEE MONTEREY, 2016,
  • [30] Strategic CO2 management in the energy and petroleum sector for the production of low-carbon LNG: A Qatar Case Study
    Sawaly, Razan
    Alherbawi, Mohammad
    Abd, Abdul Salam
    AlNouss, Ahmed
    Abushaikha, Ahmad S.
    Al-Ansari, Tareq
    JOURNAL OF CO2 UTILIZATION, 2024, 83