Physics-driven Machine Learning for the Prediction of Coronal Mass Ejections' Travel Times

被引:4
|
作者
Guastavino, Sabrina [1 ]
Candiani, Valentina [1 ]
Bemporad, Alessandro [2 ]
Marchetti, Francesco [3 ]
Benvenuto, Federico [1 ]
Massone, Anna Maria [1 ]
Mancuso, Salvatore [2 ]
Susino, Roberto [2 ]
Telloni, Daniele [2 ]
Fineschi, Silvano [2 ]
Michele, Piana [1 ,2 ]
机构
[1] Univ Genoa, Dipartimento Matemat, MIDA, Via Dodecaneso 35, I-16146 Genoa, Italy
[2] Ist Nazl Astrofis INAF, Osservatorio Astrofis Torino, Rome, Italy
[3] Univ Padua, Dipartimento Matemat Tullio Levi Civita, Padua, Italy
来源
ASTROPHYSICAL JOURNAL | 2023年 / 954卷 / 02期
关键词
CME ARRIVAL-TIME; AERODYNAMIC DRAG; SOLAR ORBITER; EARTH; PROPAGATION; MISSION;
D O I
10.3847/1538-4357/ace62d
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Coronal Mass Ejections (CMEs) correspond to dramatic expulsions of plasma and magnetic field from the solar corona into the heliosphere. CMEs are scientifically relevant because they are involved in the physical mechanisms characterizing the active Sun. However, more recently, CMEs have attracted attention for their impact on space weather, as they are correlated to geomagnetic storms and may induce the generation of solar energetic particle streams. In this space weather framework, the present paper introduces a physics-driven artificial intelligence (AI) approach to the prediction of CMEs' travel time, in which the deterministic drag-based model is exploited to improve the training phase of a cascade of two neural networks fed with both remote sensing and in situ data. This study shows that the use of physical information in the AI architecture significantly improves both the accuracy and the robustness of the travel time prediction.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] A standalone prediction model for atomic oxygen and coronal mass ejections
    Mahmoud, W. M.
    Elfiky, D.
    Robaa, S. M.
    Elnawawy, M. S.
    Yousef, S. M.
    ASTROPHYSICS AND SPACE SCIENCE, 2023, 368 (03)
  • [32] Prediction of Geomagnetic Storms Associated with Interplanetary Coronal Mass Ejections
    Rodkin, D. G.
    Slemzin, V. A.
    ASTRONOMY REPORTS, 2024, 68 (02) : 192 - 199
  • [33] Physics-Driven Machine-Learning-Based Borehole Sonic Interpretation in the Presence of Casing and Drillpipe
    Liang, Lin
    Lei, Ting
    Donald, Adam
    Blyth, Matthew
    SPE RESERVOIR EVALUATION & ENGINEERING, 2021, 24 (02) : 310 - 324
  • [34] Energetic ion enhancements in sheaths driven by interplanetary coronal mass ejections
    Kilpua, Emilia
    Vainio, Rami
    Cohen, Christina
    Dresing, Nina
    Good, Simon
    Ruohotie, Julia
    Trotta, Domenico
    Bale, Stuart D.
    Christian, Eric
    Hill, Matt
    McComas, David J.
    McNutt, Ralph
    Schwadron, Nathan
    ASTROPHYSICS AND SPACE SCIENCE, 2023, 368 (08)
  • [35] The origin of coronal mass ejections and magnetic clouds: Thermally or magnetically driven?
    Zhang, GL
    Wang, C
    He, SH
    SOLAR WIND EIGHT - PROCEEDINGS OF THE EIGHTH INTERNATIONAL SOLAR WIND CONFERENCE, 1996, (382): : 553 - 553
  • [36] Waves upstream and downstream of interplanetary shocks driven by coronal mass ejections
    Kajdic, P.
    Blanco-Cano, X.
    Aguilar-Rodriguez, E.
    Russell, C. T.
    Jian, L. K.
    Luhmann, J. G.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2012, 117
  • [37] New data-driven method of simulating coronal mass ejections
    Liu, Cheng'ao
    Chen, Tao
    Zhao, Xinhua
    ASTRONOMY & ASTROPHYSICS, 2019, 626
  • [38] Energetic ion enhancements in sheaths driven by interplanetary coronal mass ejections
    Emilia Kilpua
    Rami Vainio
    Christina Cohen
    Nina Dresing
    Simon Good
    Julia Ruohotie
    Domenico Trotta
    Stuart D. Bale
    Eric Christian
    Matt Hill
    David J. McComas
    Ralph McNutt
    Nathan Schwadron
    Astrophysics and Space Science, 2023, 368
  • [39] Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials
    Lansford, Joshua L.
    Vlachos, Dionisios G.
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [40] Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials
    Joshua L. Lansford
    Dionisios G. Vlachos
    Nature Communications, 11