High-Temperature Pyrolysis of N-Tetracosane Based on ReaxFF Molecular Dynamics Simulation

被引:4
|
作者
Yu, Xiaowen [1 ]
Zhang, Chunhua [1 ]
Wang, Hanwen [1 ]
Li, Yangyang [1 ]
Kang, Yujia [1 ]
Yang, Ke [1 ]
机构
[1] Changan Univ, Key Lab Shaanxi Prov Dev & Applicat New Transporta, Xian 710064, Peoples R China
来源
ACS OMEGA | 2023年 / 8卷 / 23期
关键词
REACTIVE FORCE-FIELD; THERMAL-DECOMPOSITION; HYDROCARBONS; CRACKING;
D O I
10.1021/acsomega.3c01525
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In order to further understand the high-temperature reactionprocessand pyrolysis mechanism of hydrocarbon fuels, the high-temperaturepyrolysis behavior of n-tetracosane (C24H50) was investigated in this paper via the reaction forcefield (ReaxFF) method-based molecular dynamics approach. There aretwo main types of initial reaction channels for n-heptane pyrolysis, C-C and C-H bond fission. At lowtemperatures, there is little difference in the percentage of thetwo reaction channels. With the temperature increase, C-C bondfission dominates, and a small amount of n-tetracosaneis decomposed by reaction with intermediates. It is found that H radicalsand CH3 radicals are widely present throughout the pyrolysisprocess, but the amount is little at the end of the pyrolysis. Inaddition, the distribution of the main products H-2, CH4, and C2H4, and related reactions areinvestigated. The pyrolysis mechanism was constructed based on thegeneration of major products. The activation energy of C24H50 pyrolysis is 277.19 kJ/mol, obtained by kinetic analysisin the temperature range of 2400-3600 K.
引用
收藏
页码:20823 / 20833
页数:11
相关论文
共 50 条
  • [21] ReaxFF Molecular Dynamics Study on the Pyrolysis Process of N-dodecanol
    Sun, Hao
    Yao, Guice
    Gao, Hui
    Zhao, Jin
    Wen, Dongsheng
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2023, 44 (02): : 444 - 450
  • [22] Pyrolysis and oxidation mechanisms of ethylene and ethanol blended fuel based on ReaxFF molecular dynamics simulation
    Song, Liang
    Xu, Chun-Chen
    Ye, Jing
    Zhang, Yong
    Chen, Biao
    Hou, Fang-Chao
    Chen, Bo-Cong
    Su, Hao-Long
    Sun, Jing
    FUEL, 2024, 373
  • [23] Study on pyrolysis characteristics of Ningxia high rank bituminous coal composite macerals based on ReaxFF molecular dynamics simulation
    Wang Q.
    Wang R.
    Zhang J.
    Li H.
    Bai H.
    Meitan Xuebao/Journal of the China Coal Society, 2021, 46 : 1011 - 1019
  • [24] Soot formation of n-decane pyrolysis: A mechanistic view from ReaxFF molecular dynamics simulation
    Liu, Lu
    Xu, Huajie
    Zhu, Quan
    Ren, Haisheng
    Li, Xiangyuan
    CHEMICAL PHYSICS LETTERS, 2020, 760 (760)
  • [25] Molecular Dynamics Simulation of Waste Tire Pyrolysis at High Temperature
    Zhengcheng Wen
    Jing Guo
    Yuan Li
    Qunxing Huang
    International Journal of Environmental Research, 2023, 17
  • [26] Molecular Dynamics Simulation of Waste Tire Pyrolysis at High Temperature
    Wen, Zhengcheng
    Guo, Jing
    Li, Yuan
    Huang, Qunxing
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH, 2023, 17 (03)
  • [27] Clarifying the effect of chemical structure on high-temperature resistance of polyimides based on DFT and ReaxFF based molecular dynamic simulation
    Pu, Chuanzhi
    Lin, Daolei
    Xu, Hongjie
    Liu, Fangzhou
    Gao, Hong
    Tian, Guofeng
    Qi, Shengli
    Wu, Dezhen
    POLYMER, 2022, 255
  • [28] High-temperature molecular dynamics simulation of cellobiose and maltose
    Murillo, Jessica D.
    Moffet, Melissa
    Biernacki, Joseph J.
    Northrup, Scott
    AICHE JOURNAL, 2015, 61 (08) : 2562 - 2570
  • [29] Initial Chemical Reaction Simulation of Coal Pyrolysis via ReaxFF Molecular Dynamics
    Zheng, Mo
    Li, Xiaoxia
    Liu, Jian
    Guo, Li
    ENERGY & FUELS, 2013, 27 (06) : 2942 - 2951
  • [30] Atomic-scale insight into the pyrolysis of polycarbonate by ReaxFF-based reactive molecular dynamics simulation
    Liu, Qiang
    Liu, Shixiang
    Lv, Yadong
    Hu, Ping
    Huang, Yajiang
    Kong, Miqiu
    Li, Guangxian
    FUEL, 2021, 287