Density peaks clustering algorithm based on fuzzy and weighted shared neighbor for uneven density datasets

被引:19
|
作者
Zhao, Jia [1 ]
Wang, Gang [1 ]
Pan, Jeng-Shyang [2 ]
Fan, Tanghuai [1 ]
Lee, Ivan [3 ]
机构
[1] Nanchang Inst Technol, Sch Informat Engn, Nanchang 330099, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao 266590, Peoples R China
[3] Univ South Australia, UniSA STEM, Adelaide, SA 5000, Australia
基金
中国国家自然科学基金;
关键词
Uneven density data; Density peaks clustering; Fuzzy neighborhood; K-nearest neighbor; Weighted shared neighbor;
D O I
10.1016/j.patcog.2023.109406
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Uneven density data refers to data with a certain difference in sample density between clusters. The local density of density peaks clustering algorithm (DPC) does not consider the effect of sample den-sity difference between clusters of uneven density data, which may lead to wrong selection of cluster centers; the algorithm allocation strategy makes it easy to incorrectly allocate samples originally belong-ing to sparse clusters to dense clusters, which reduces clustering efficiency. In this study, we proposed the density peaks clustering algorithm based on fuzzy and weighted shared neighbor for uneven density datasets (DPC-FWSN). First, a nearest neighbor fuzzy kernel function is obtained by combining K-nearest neighbor and fuzzy neighborhood. Then, local density is redefined by the nearest neighbor fuzzy ker-nel function. The local density can better characterize the distribution characteristics of the sample by balancing the contribution of sample density in dense and sparse areas, in order to avoid the situation that the sparse cluster does not have a cluster center. Finally, the allocation strategy for weighted shared neighbor similarity is proposed to optimize the sample allocation at the boundary of the sparse cluster. Experiments are performed on IDPC-FA, FKNN-DPC, FNDPC, DPCSA and DPC for uneven density datasets, complex morphologies datasets and real datasets. The clustering results demonstrate that DPC-FWSN ef-fectively handles datasets with uneven density distribution.(c) 2023 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页数:15
相关论文
共 50 条
  • [31] Improved density peaks clustering based on firefly algorithm
    Zhao J.
    Tang J.
    Shi A.
    Fan T.
    Xu L.
    Xu, Lizhong (lxu0530@126.com), 1600, Inderscience Enterprises Ltd. (15): : 24 - 42
  • [32] A Grid-Based Density Peaks Clustering Algorithm
    Fang, Xintong
    Xu, Zhen
    Ji, Haifeng
    Wang, Baoliang
    Huang, Zhiyao
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (04) : 5476 - 5484
  • [33] Mass-Based Density Peaks Clustering Algorithm
    Ling, Ding
    Xiao, Xu
    INTELLIGENT INFORMATION PROCESSING IX, 2018, 538 : 40 - 48
  • [34] Improved density peaks clustering based on firefly algorithm
    Zhao, Jia
    Tang, Jingjing
    Shi, Aiye
    Fan, Tanghuai
    Xu, Lizhong
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2020, 15 (01) : 24 - 42
  • [35] A Novel Oversampling Method for Imbalanced Datasets Based on Density Peaks Clustering
    Cao, Jie
    Shi, Yong
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2021, 28 (06): : 1813 - 1819
  • [36] Manifold Density Peaks Clustering Algorithm
    Xu, Xiaohua
    Ju, Yongsheng
    Liang, Yali
    He, Ping
    2015 THIRD INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA, 2015, : 311 - 318
  • [37] Survey on Density Peaks Clustering Algorithm
    Xu X.
    Ding S.-F.
    Ding L.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (05): : 1800 - 1816
  • [38] A spectral clustering algorithm based on attribute fluctuation and density peaks clustering algorithm
    Xin Song
    Shuhua Li
    Ziqiang Qi
    Jianlin Zhu
    Applied Intelligence, 2023, 53 : 10520 - 10534
  • [39] A spectral clustering algorithm based on attribute fluctuation and density peaks clustering algorithm
    Song, Xin
    Li, Shuhua
    Qi, Ziqiang
    Zhu, Jianlin
    APPLIED INTELLIGENCE, 2023, 53 (09) : 10520 - 10534
  • [40] Density Peaks Clustering Algorithm Based on Weighted k-Nearest Neighbors and Geodesic Distance
    Liu, Lina
    Yu, Donghua
    IEEE ACCESS, 2020, 8 : 168282 - 168296