Detection and Classification of Fruit Tree Leaf Disease Using Deep Learning

被引:0
|
作者
Nalini, C. [1 ]
Kayalvizhi, N. [1 ]
Keerthana, V [1 ]
Balaji, R. [1 ]
机构
[1] Kongu Engn Coll, Dept Informat Technol, Perundurai, India
关键词
Deep learning; EfficientNet; CNN; AlexNet; Xception; ResNet-50; Inception V3;
D O I
10.1007/978-981-19-3148-2_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Plant disease identification is extremely important in agriculture since it is critical for boosting crop output. Visual plant disease analysis is a modern technique to handle this problem, following recent developments in imaging. In this study, we look at the challenge of plant disease detection which is visually done for identification of plant disease. Plant disease images, in comparison with other types of photographic images, are likely to have randomly dispersed lesions, varied symptoms, and complex backgrounds, making discriminative information difficult to capture. To facilitate plant disease recognition research, we had taken the Plant Village dataset with 13,347 images with 14 classes. Models were trained using the Plant Village dataset. The performance of EfficientNet architecture for classifying the plant leaf disease was compared against ResNet-50, Inception V3, AlexNet, and Xception deep learning algorithms in this analysis. The outcomes of the test dataset revealed that B3 models of the EfficientNet architecture had the greatest accuracy of 99.90 percent when related to other deep learning algorithm in the dataset.
引用
收藏
页码:347 / 356
页数:10
相关论文
共 50 条
  • [41] A study and comparison of deep learning based potato leaf disease detection and classification techniques using explainable AI
    Hrithik Paul
    Sayani Ghatak
    Sanjay Chakraborty
    Saroj Kumar Pandey
    Lopamudra Dey
    Debashis Show
    Saikat Maity
    Multimedia Tools and Applications, 2024, 83 : 42485 - 42518
  • [42] A study and comparison of deep learning based potato leaf disease detection and classification techniques using explainable AI
    Paul, Hrithik
    Ghatak, Sayani
    Chakraborty, Sanjay
    Pandey, Saroj Kumar
    Dey, Lopamudra
    Show, Debashis
    Maity, Saikat
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (14) : 42485 - 42518
  • [43] Semantic segmentation for plant leaf disease classification and damage detection: A deep learning approach
    Polly, Roshni
    Devi, E. Anna
    SMART AGRICULTURAL TECHNOLOGY, 2024, 9
  • [44] High performance deep learning architecture for early detection and classification of plant leaf disease
    Shewale, Mitali, V
    Daruwala, Rohin D.
    JOURNAL OF AGRICULTURE AND FOOD RESEARCH, 2023, 14
  • [45] Date Fruit Detection and Classification Based on Its Variety Using Deep Learning Technology
    Almutairi, Ahad
    Alharbi, Jawza
    Alharbi, Shouq
    Alhasson, Haifa F.
    Alharbi, Shuaa S.
    Habib, Shabana
    IEEE ACCESS, 2024, 12 : 190666 - 190677
  • [46] Fruit Classification for Retail Stores Using Deep Learning
    Luis Rojas-Aranda, Jose
    Ignacio Nunez-Varela, Jose
    Cuevas-Tello, J. C.
    Rangel-Ramirez, Gabriela
    PATTERN RECOGNITION (MCPR 2020), 2020, 12088 : 3 - 13
  • [47] Survey on Fruit Classification Using Deep Learning Techniques
    Petluru, Surya
    Singh, Pradeep
    INFORMATION SYSTEMS AND MANAGEMENT SCIENCE, ISMS 2021, 2023, 521 : 497 - 505
  • [48] Modeling the Detection and Classification of Tomato Leaf Diseases Using a Robust Deep Learning Framework
    Gupta, Manish
    Yadav, Dharmveer
    Khan, Safdar Sardar
    Kumawat, Ashish Kumar
    Chourasia, Ankita
    Rane, Pinky
    Ujlayan, Anshul
    TRAITEMENT DU SIGNAL, 2024, 41 (04) : 1667 - 1678
  • [49] Plant leaf disease detection and classification using modified transfer learning models
    Meenakshi Srivastava
    Jasraj Meena
    Multimedia Tools and Applications, 2024, 83 : 38411 - 38441
  • [50] Plant leaf disease detection and classification using modified transfer learning models
    Srivastava, Meenakshi
    Meena, Jasraj
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (13) : 38411 - 38441