Multi-view spectral clustering based on constrained Laplacian rank

被引:1
|
作者
Song, Jinmei [1 ]
Liu, Baokai [1 ]
Yu, Yao [2 ]
Zhang, Kaiwu [1 ]
Du, Shiqiang [1 ,2 ,3 ]
机构
[1] Gansu Prov Northwest Minzu Univ, Key Lab Minzu Languages & Cultures Intelligent Inf, Lanzhou 730030, Gansu, Peoples R China
[2] Northwest Minzu Univ, Coll Math & Comp Sci, Lanzhou 730030, Gansu, Peoples R China
[3] Northwest Minzu Univ, Key Lab Linguist & Cultural Comp, Minist Educ, Lanzhou 730030, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-view clustering; Spectral clustering; Graph learning; Constrained Laplacian rank; GRAPH; SEGMENTATION;
D O I
10.1007/s00138-023-01497-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The graph-based approach is a representative clustering method among multi-view clustering algorithms. However, it remains a challenge to quickly acquire complementary information in multi-view data and to execute effective clustering when the quality of the initially constructed data graph is inadequate. Therefore, we propose multi-view spectral clustering based on constrained Laplacian rank method, a new graph-based method (CLRSC). The following are our contributions: (1) Self-representation learning and CLR are extended to multi-view and they are connected into a unified framework to learn a common affinity matrix. (2) To achieve the overall optimization we construct a graph learning method based on constrained Laplacian rank and combine it with spectral clustering. (3) An iterative optimization-based procedure we designed and showed that our algorithm is convergent. Finally, sufficient experiments are carried out on 5 benchmark datasets. The experimental results on MSRC-v1 and BBCSport datasets show that the accuracy (ACC) of the method is 10.95% and 4.61% higher than the optimal comparison algorithm, respectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Unpaired Multi-View Kernel Spectral Clustering
    Houthuys, Lynn
    Suykens, Johan A. K.
    2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017, : 1307 - 1313
  • [42] Multi-view spectral clustering for uncertain objects
    Sharma, Krishna Kumar
    Seal, Ayan
    INFORMATION SCIENCES, 2021, 547 : 723 - 745
  • [43] A Unified Framework for Multi-view Spectral Clustering
    Zhong, Guo
    Pun, Chi-Man
    2020 IEEE 36TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2020), 2020, : 1854 - 1857
  • [44] Binary multi-view clustering with spectral embedding
    Ma, Zeqi
    Wong, Wai Keung
    Zhang, Li-ying
    NEUROCOMPUTING, 2023, 557
  • [45] Multi-View Spectral Clustering With Incomplete Graphs
    Zhuge, Wenzhang
    Luo, Tingjin
    Tao, Hong
    Hou, Chenping
    Yi, Dongyun
    IEEE ACCESS, 2020, 8 : 99820 - 99831
  • [46] Constrained NMF-Based Multi-View Clustering on Unmapped Data
    Zhang, Xianchao
    Zong, Linlin
    Liu, Xinyue
    Yu, Hong
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 3174 - 3180
  • [47] Binary spectral clustering for multi-view data
    Yan, Xueming
    Zhong, Guo
    Jin, Yaochu
    Ke, Xiaohua
    Xie, Fenfang
    Huang, Guoheng
    INFORMATION SCIENCES, 2024, 677
  • [48] Hyper-Laplacian Regularized Nonconvex Low-Rank Representation for Multi-View Subspace Clustering
    Wang, Shuqin
    Chen, Yongyong
    Zhang, Linna
    Cen, Yigang
    Voronin, Viacheslav
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2022, 8 : 376 - 388
  • [49] Hyper-Laplacian regularized multi-view subspace clustering with low-rank tensor constraint
    Lu, Gui-Fu
    Yu, Qin-Ru
    Wang, Yong
    Tang, Ganyi
    NEURAL NETWORKS, 2020, 125 : 214 - 223
  • [50] Multi-view Spectral Clustering via Multi-view Weighted Consensus and Matrix-Decomposition Based Discretization
    Chen, Man-Sheng
    Huang, Ling
    Wang, Chang-Dong
    Huang, Dong
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2019), PT I, 2019, 11446 : 175 - 190