Circuit of Quantum Fractional Fourier Transform

被引:1
|
作者
Zhao, Tieyu [1 ]
Chi, Yingying [2 ]
机构
[1] Northeastern Univ Qinhuangdao, Informat Sci Teaching & Res Sect, Qinhuangdao 066004, Peoples R China
[2] Northeastern Univ Qinhuangdao, Coll Marxism, Qinhuangdao 066004, Peoples R China
关键词
quantum fractional Fourier transform; quantum Fourier transform; quantum phase estimation; quantum computing; IMAGE ENCRYPTION; REPRESENTATION;
D O I
10.3390/fractalfract7100743
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first use the quantum Fourier transform (QFT) and quantum phase estimation (QPE) to realize the quantum fractional Fourier transform (QFrFT). As diverse definitions of the discrete fractional Fourier transform (DFrFT) exist, the relationship between the QFrFT and a classical algorithm is then established; that is, we determine the classical algorithm corresponding to the QFrFT. Second, we observe that many definitions of the multi-fractional Fourier transform (mFrFT) are flawed: when we attempt to propose a design scheme for the quantum mFrFT, we find that there are many invalid weighting terms in the definition of the mFrFT. This flaw may have very significant impacts on relevant algorithms for signal processing and image encryption. Finally, we analyze the circuit of the QFrFT and the reasons for the observed defects.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] THE FRACTIONAL ORDER FOURIER-TRANSFORM AND ITS APPLICATION TO QUANTUM-MECHANICS
    NAMIAS, V
    JOURNAL OF THE INSTITUTE OF MATHEMATICS AND ITS APPLICATIONS, 1980, 25 (03): : 241 - 265
  • [42] FRACTIONAL ORDER FOURIER-TRANSFORM AND FOURIER OPTICS
    PELLATFINET, P
    BONNET, G
    OPTICS COMMUNICATIONS, 1994, 111 (1-2) : 141 - 154
  • [43] Quantum arithmetic with the quantum Fourier transform
    Ruiz-Perez, Lidia
    Carlos Garcia-Escartin, Juan
    QUANTUM INFORMATION PROCESSING, 2017, 16 (06)
  • [44] Quantum arithmetic with the quantum Fourier transform
    Lidia Ruiz-Perez
    Juan Carlos Garcia-Escartin
    Quantum Information Processing, 2017, 16
  • [45] Characterizations of the gyrator transform via the fractional Fourier transform
    Kagawa, Toshinao
    Suzuki, Toshio
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2023, 34 (05) : 399 - 413
  • [46] Multidimensional fractional Fourier transform and generalized fractional convolution
    Kamalakkannan, R.
    Roopkumar, R.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2020, 31 (02) : 152 - 165
  • [47] Fractional Integrals of Fractional Fourier Transform for Integrable Boehmians
    Singh, Abhishek
    Banerji, P. K.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2018, 88 (01) : 49 - 53
  • [48] Fractional Fourier transform in the framework of fractional calculus operators
    Kilbas, A. A.
    Luchko, Yu. F.
    Martinez, H.
    Trujillo, J. J.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (10) : 779 - 795
  • [49] Random Discrete Fractional Fourier Transform
    Pei, Soo-Chang
    Hsue, Wen-Liang
    IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (12) : 1015 - 1018
  • [50] THE FRACTIONAL QUATERNION FOURIER NUMBER TRANSFORM
    da Silva, Luiz C.
    de Oliveira Neto, Jose R.
    Lima, Juliano B.
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 5610 - 5614