Barlow twin self-supervised pre-training for remote sensing change detection

被引:1
|
作者
Feng, Wenqing [1 ]
Tu, Jihui [2 ]
Sun, Chenhao [3 ]
Xu, Wei [1 ,4 ]
机构
[1] Hangzhou Dianzi Univ, Sch Comp Sci, Hangzhou, Peoples R China
[2] Yangtze Univ, Elect & Informat Sch, Jingzhou, Peoples R China
[3] Changsha Univ Sci & Technol, Elect & Informat Engn Sch, Changsha, Peoples R China
[4] Natl Univ Def Technol, Informat Syst & Management Coll, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
NETWORKS;
D O I
10.1080/2150704X.2023.2264493
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Remote sensing change detection (CD) methods that rely on supervised deep convolutional neural networks require large-scale labelled data, which is time-consuming and laborious to collect and label, especially for bi-temporal samples containing changed areas. Conversely, acquiring a large volume of unannotated images is relatively easy. Recently, self-supervised contrastive learning has emerged as a promising method for learning from unannotated images, thereby reducing the need for annotation. However, most existing methods employ random values or ImageNet pre-trained models to initialize their encoders and lack prior knowledge tailored to the demands of CD tasks, thus constraining the performance of CD models. To address these challenges, we propose a novel Barlow Twins self-supervised pre-training method for CD (BTSCD), which uses absolute feature differences to directly learn distinct representations associated with changed regions from unlabelled bi-temporal remote sensing images in a self-supervised manner. Experimental results obtained using two publicly available CD datasets demonstrate that our proposed approach exhibits competitive quantitative performance. Moreover, the proposed method achieved final results superior to those of existing state-of-the-art methods.
引用
收藏
页码:1087 / 1099
页数:13
相关论文
共 50 条
  • [21] A Self-Supervised Pre-Training Method for Chinese Spelling Correction
    Su J.
    Yu S.
    Hong X.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2023, 51 (09): : 90 - 98
  • [22] Detection of Changes in Buildings in Remote Sensing Images via Self-Supervised Contrastive Pre-Training and Historical Geographic Information System Vector Maps
    Feng, Wenqing
    Guan, Fangli
    Tu, Jihui
    Sun, Chenhao
    Xu, Wei
    REMOTE SENSING, 2023, 15 (24)
  • [23] Self-supervised pre-training on industrial time-series
    Biggio, Luca
    Kastanis, Iason
    2021 8TH SWISS CONFERENCE ON DATA SCIENCE, SDS, 2021, : 56 - 57
  • [24] Self-supervised Pre-training for Semantic Segmentation in an Indoor Scene
    Shrestha, Sulabh
    Li, Yimeng
    Kosecka, Jana
    2024 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS, WACVW 2024, 2024, : 625 - 635
  • [25] SPAKT: A Self-Supervised Pre-TrAining Method for Knowledge Tracing
    Ma, Yuling
    Han, Peng
    Qiao, Huiyan
    Cui, Chaoran
    Yin, Yilong
    Yu, Dehu
    IEEE ACCESS, 2022, 10 : 72145 - 72154
  • [26] Masked Feature Prediction for Self-Supervised Visual Pre-Training
    Wei, Chen
    Fan, Haoqi
    Xie, Saining
    Wu, Chao-Yuan
    Yuille, Alan
    Feichtenhofer, Christoph
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 14648 - 14658
  • [27] CDS: Cross-Domain Self-supervised Pre-training
    Kim, Donghyun
    Saito, Kuniaki
    Oh, Tae-Hyun
    Plummer, Bryan A.
    Sclaroff, Stan
    Saenko, Kate
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9103 - 9112
  • [28] DiT: Self-supervised Pre-training for Document Image Transformer
    Li, Junlong
    Xu, Yiheng
    Lv, Tengchao
    Cui, Lei
    Zhang, Cha
    Wei, Furu
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3530 - 3539
  • [29] MEASURING THE IMPACT OF DOMAIN FACTORS IN SELF-SUPERVISED PRE-TRAINING
    Sanabria, Ramon
    Wei-Ning, Hsu
    Alexei, Baevski
    Auli, Michael
    2023 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING WORKSHOPS, ICASSPW, 2023,
  • [30] Correlational Image Modeling for Self-Supervised Visual Pre-Training
    Li, Wei
    Xie, Jiahao
    Loy, Chen Change
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 15105 - 15115