RNAPII-dependent ATM signaling at collisions with replication forks

被引:3
|
作者
Einig, Elias [1 ]
Jin, Chao [1 ]
Andrioletti, Valentina [1 ,3 ]
Macek, Boris [2 ]
Popov, Nikita [1 ]
机构
[1] Univ Hosp Tubingen, Dept Med Oncol & Pulmonol, Otfried-Mueller-Str 14, D-72076 Tubingen, Germany
[2] Eberhard Karls Univ Tubingen, Interfac Inst Cell Biol, Morgenstelle 15, D-72076 Tubingen, Germany
[3] enGenome SRL, Via Fratelli Cuzio 42, I-27100 Pavia, Italy
关键词
DNA-REPLICATION; TRANSCRIPTIONAL ACTIVATION; COMPUTATIONAL PLATFORM; GENE-EXPRESSION; HISTONE H2AX; PAF1; COMPLEX; STRESS; GENOME; MYC; TARGET;
D O I
10.1038/s41467-023-40924-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deregulation of RNA Polymerase II (RNAPII) by oncogenic signaling leads to collisions of RNAPII with DNA synthesis machinery (transcription-replication conflicts, TRCs). TRCs can result in DNA damage and are thought to underlie genomic instability in tumor cells. Here we provide evidence that elongating RNAPII nucleates activation of the ATM kinase at TRCs to stimulate DNA repair. We show the ATPase WRNIP1 associates with RNAPII and limits ATM activation during unperturbed cell cycle. WRNIP1 binding to elongating RNAPII requires catalytic activity of the ubiquitin ligase HUWE1. Mutation of HUWE1 induces TRCs, promotes WRNIP1 dissociation from RNAPII and binding to the replisome, stimulating ATM recruitment and activation at RNAPII. TRCs and translocation of WRNIP1 are rapidly induced in response to hydroxyurea treatment to activate ATM and facilitate subsequent DNA repair. We propose that TRCs can provide a controlled mechanism for stalling of replication forks and ATM activation, instrumental in cellular response to replicative stress.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Cohesin-dependent chromosome loop extrusion is limited by transcription and stalled replication forks
    Jeppsson, Kristian
    Sakata, Toyonori
    Nakato, Ryuichiro
    Milanova, Stefina
    Shirahige, Katsuhiko
    Bjorkegren, Camilla
    SCIENCE ADVANCES, 2022, 8 (23):
  • [22] RFWD3-Dependent Ubiquitination of RPA Regulates Repair at Stalled Replication Forks
    Elia, Andrew E. H.
    Wang, David C.
    Willis, Nicholas A.
    Boardman, Alexander P.
    Hajdu, Ildiko
    Adeyemi, Richard O.
    Lowry, Elizabeth
    Gygi, Steven P.
    Scully, Ralph
    Elledge, Stephen J.
    MOLECULAR CELL, 2015, 60 (02) : 280 - 293
  • [23] DDK Has a Primary Role in Processing Stalled Replication Forks to Initiate Downstream Checkpoint Signaling
    Sasi, Nanda Kumar
    Coquel, Flavie
    Lin, Yea-Lih
    MacKeigan, Jeffrey P.
    Pasero, Philippe
    Weinreich, Michael
    NEOPLASIA, 2018, 20 (10): : 985 - 995
  • [25] The ATM-dependent DNA damage signaling pathway
    Kitagawa, R.
    Kastan, M. B.
    MOLECULAR APPROACHES TO CONTROLLING CANCER, 2005, 70 : 99 - 109
  • [26] Replication-dependent recruitment of the β-subunit of DNA polymerase III from cytosolic spaces to replication forks in Escherichia coli
    Onogi, T
    Ohsumi, K
    Katayama, T
    Hiraga, S
    JOURNAL OF BACTERIOLOGY, 2002, 184 (03) : 867 - 870
  • [27] DNA damage-induced activation of ATM and ATM-dependent signaling pathways
    Kurz, EU
    Lees-Miller, SP
    DNA REPAIR, 2004, 3 (8-9) : 889 - 900
  • [28] Artemis-dependent DNA double-strand break formation at stalled replication forks
    Unno, Junya
    Takagi, Masatoshi
    Piao, Jinhua
    Sugimoto, Masataka
    Honda, Fumiko
    Maeda, Daisuke
    Masutani, Mitsuko
    Kiyono, Tohru
    Watanabe, Fumiaki
    Morio, Tomohiro
    Teraoka, Hirobumi
    Mizutani, Shuki
    CANCER SCIENCE, 2013, 104 (06) : 703 - 710
  • [29] Fbh1 Limits Rad51-Dependent Recombination at Blocked Replication Forks
    Lorenz, Alexander
    Osman, Fekret
    Folkyte, Victoria
    Sofueva, Sevil
    Whitby, Matthew C.
    MOLECULAR AND CELLULAR BIOLOGY, 2009, 29 (17) : 4742 - 4756
  • [30] Rescue of collapsed replication forks is dependent on NSMCE2 to prevent mitotic DNA damage
    Pond, Kelvin W.
    de Renty, Christelle
    Yagle, Mary K.
    Ellis, Nathan A.
    PLOS GENETICS, 2019, 15 (02):