Controlling strain in suspended Nanomaterials

被引:0
|
作者
Hermann, Sascha [1 ,2 ]
Boettger, Simon [1 ,2 ]
Albrecht, Jan [3 ]
机构
[1] Chemnitz Univ, Ctr Microtechnol, Chemnitz, Germany
[2] Chemnitz Univ, Ctr Mat Architecture & Integrat Nanomembrananes, Chemnitz, Germany
[3] Fraunhofer Inst Elect Nano Syst ENAS, Chemnitz, Germany
关键词
strained nanomaterial; NEMS; strain engineering; straintronics; strain sensor; CNT; graphene; 1D and 2D nanomaterial; CARBON NANOTUBES; MECHANICAL RESONATORS; GRAPHENE;
D O I
10.1109/IITC/MAM57687.2023.10154704
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The use of nanomaterials in emerging electronics and sensor technologies is becoming more prevalent due to their unique properties. However, controlling the strain states of these materials in nanodevices remains a persistent challenge. Incorporating mechanical strain in a controllable manner is crucial and is simplified here for suspended nanomaterial assemblies in nano-electro-mechanical system (NEMS) configurations. We discuss a verified CMOS compatible and scalable surface micromachining approach with respect to design capabilities based on FE simulations. It is shown that inplane stress applicable in multi-axial directions can be controlled by only a few geometry factors and by process parameters of strain mediating stress layers.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Factors Controlling Contemporary Suspended Sediment Yield in the Caucasus Region
    Golosov, Valentin
    Tsyplenkov, Anatoly
    WATER, 2021, 13 (22)
  • [42] Efficiency of trout raceway quiescent zones in controlling suspended solids
    Soderberg, Richard W.
    NORTH AMERICAN JOURNAL OF AQUACULTURE, 2007, 69 (03) : 275 - 280
  • [43] Side-by-side comparison of Raman spectra of anchored and suspended carbon nanomaterials
    Sidorov, Anton N.
    Pabba, Santosh
    Hewaparakrama, Kapila P.
    Cohn, Robert W.
    Sumanasekera, G. U.
    NANOTECHNOLOGY, 2008, 19 (19)
  • [44] Strain modulation of phase transformation of noble metal nanomaterials
    Wu, Tong
    Sun, Mingzi
    Huang, Bolong
    INFOMAT, 2020, 2 (04) : 715 - 734
  • [45] Strain and thermal conductivity in ultrathin suspended silicon nanowires
    Fan, Daniel
    Sigg, Hans
    Spolenak, Ralph
    Ekinci, Yasin
    PHYSICAL REVIEW B, 2017, 96 (11)
  • [46] Strain Characterization of Suspended-Core Fiber Tapers
    Andre, Ricardo M.
    Silva, Susana O.
    Becker, Martin
    Schuster, Kay
    Rothardt, M.
    Bartelt, H.
    Marques, Manuel B.
    Frazao, Orlando
    MICRO-STRUCTURED AND SPECIALTY OPTICAL FIBRES, 2012, 8426
  • [47] Low contact resistivity and strain in suspended multilayer graphene
    Rouxinol, Francisco P.
    Gelamo, Rogerio V.
    Amici, Renato G.
    Vaz, Alfredo R.
    Moshkalev, Stanislav A.
    APPLIED PHYSICS LETTERS, 2010, 97 (25)
  • [48] Strain sensitivity enhancement in suspended core fiber tapers
    André R.M.
    Silva S.O.
    Becker M.
    Schuster K.
    Rothardt M.
    Bartelt H.
    Marques M.B.
    Frazão O.
    Frazão, O. (ofrazao@inescporto.pt), 2013, Springer Verlag (03) : 118 - 123
  • [49] BIAXIAL STRAIN IN SUSPENDED GRAPHENE MEMBRANES FOR PIEZORESISTIVE SENSING
    Smith, A. D.
    Niklaus, F.
    Vaziri, S.
    Fischer, A. C.
    Sterner, M.
    Forsberg, F.
    Schroeder, S.
    Oestling, M.
    Lemme, M. C.
    2014 IEEE 27TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS), 2014, : 1055 - 1058
  • [50] Electrical properties and strain distribution of Ge suspended structures
    Shah, V. A.
    Rhead, S. D.
    Finch, J.
    Myronov, M.
    Reparaz, J. S.
    Morris, R. J.
    Wilson, N. R.
    Kachkanov, V.
    Dolbnya, I. P.
    Halpin, J. E.
    Patchett, D.
    Allred, P.
    Colston, G.
    Sawhney, K. J. S.
    Sotomayor Torres, C. M.
    Leadley, D. R.
    SOLID-STATE ELECTRONICS, 2015, 108 : 13 - 18