On geometric recurrence for time-inhomogeneous autoregression

被引:2
|
作者
Golomoziy, Vitaliy [1 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Fac Mech & Math, Dept Probabil Theory Stat & Actuarial Math, 60 Volodymyrska St, UA-01033 Kiev, Ukraine
来源
关键词
Coupling; renewal theory; inhomogeneous Markov chain; autoregressive model; CONVERGENCE-RATES; RENEWAL THEORY; MARKOV;
D O I
10.15559/23-VMSTA228
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The time-inhomogeneous autoregressive model AR(1) is studied, which is the pro-cess of the form Xn+1 = & alpha;nXn + & epsilon;n, where & alpha;n are constants, and & epsilon;n are independent random variables. Conditions on & alpha;n and distributions of & epsilon;n are established that guarantee the geomet-ric recurrence of the process. This result is applied to estimate the stability of n-steps tran-sition probabilities for two autoregressive processes X(1) and X(2) assuming that both & alpha;(i) n , i & ISIN; {1, 2}, and distributions of & epsilon;(i) n , i & ISIN; {1, 2}, are close enough.
引用
收藏
页码:313 / 341
页数:29
相关论文
共 50 条
  • [41] Time-Inhomogeneous Jump Processes and Variable Order Operators
    Enzo Orsingher
    Costantino Ricciuti
    Bruno Toaldo
    Potential Analysis, 2016, 45 : 435 - 461
  • [42] A probabilistic approach for gradient estimates on time-inhomogeneous manifolds
    Cheng, Li-Juan
    STATISTICS & PROBABILITY LETTERS, 2014, 88 : 174 - 183
  • [43] On the Monotonicity of the Stopping Boundary for Time-Inhomogeneous Optimal Stopping Problems
    Milazzo, Alessandro
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, : 336 - 358
  • [44] Time-inhomogeneous fractional Poisson processes defined by the multistable subordinator
    Beghin, Luisa
    Ricciuti, Costantino
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2019, 37 (02) : 171 - 188
  • [45] Adaptive pointwise estimation in time-inhomogeneous conditional heteroscedasticity models
    Cizek, P.
    Haerdle, W.
    Spokoiny, V.
    ECONOMETRICS JOURNAL, 2009, 12 (02): : 248 - 271
  • [46] Time-Inhomogeneous Finite Birth Processes with Applications in Epidemic Models
    Giorno, Virginia
    Nobile, Amelia G.
    MATHEMATICS, 2023, 11 (21)
  • [47] Robust stability of time-inhomogeneous Markov jump linear systems
    Lun, Yuriy Zacchia
    D'Innocenzo, Alessandro
    Di Benedetto, Maria Domenica
    IFAC PAPERSONLINE, 2017, 50 (01): : 3418 - 3423
  • [48] Quantifying time-inhomogeneous stochastic introgression processes with hazard rates
    Ghosh, Atiyo
    Serra, Maria Conceicao
    Haccou, Patsy
    THEORETICAL POPULATION BIOLOGY, 2012, 81 (04) : 253 - 263
  • [49] Kinetic time-inhomogeneous Lévy-driven model
    Gradinaru, Mihai
    Luirard, Emeline
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2024, 21 : 815 - 835
  • [50] Maximal displacement of a branching random walk in time-inhomogeneous environment
    Mallein, Bastien
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (10) : 3958 - 4019