On geometric recurrence for time-inhomogeneous autoregression

被引:2
|
作者
Golomoziy, Vitaliy [1 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Fac Mech & Math, Dept Probabil Theory Stat & Actuarial Math, 60 Volodymyrska St, UA-01033 Kiev, Ukraine
来源
关键词
Coupling; renewal theory; inhomogeneous Markov chain; autoregressive model; CONVERGENCE-RATES; RENEWAL THEORY; MARKOV;
D O I
10.15559/23-VMSTA228
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The time-inhomogeneous autoregressive model AR(1) is studied, which is the pro-cess of the form Xn+1 = & alpha;nXn + & epsilon;n, where & alpha;n are constants, and & epsilon;n are independent random variables. Conditions on & alpha;n and distributions of & epsilon;n are established that guarantee the geomet-ric recurrence of the process. This result is applied to estimate the stability of n-steps tran-sition probabilities for two autoregressive processes X(1) and X(2) assuming that both & alpha;(i) n , i & ISIN; {1, 2}, and distributions of & epsilon;(i) n , i & ISIN; {1, 2}, are close enough.
引用
下载
收藏
页码:313 / 341
页数:29
相关论文
共 50 条
  • [1] Polynomial Recurrence of Time-inhomogeneous Markov Chains
    Golomoziy, Vitaliy
    Moskanova, Olha
    AUSTRIAN JOURNAL OF STATISTICS, 2023, 52 : 40 - 53
  • [2] CONDITIONS FOR RECURRENCE AND TRANSIENCE FOR TIME-INHOMOGENEOUS BIRTH-AND-DEATH PROCESSES
    Abramov, Vyacheslav M.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 109 (02) : 393 - 402
  • [3] Time-inhomogeneous affine processes
    Filipovic, D
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2005, 115 (04) : 639 - 659
  • [4] Time-inhomogeneous polynomial processes
    Agoitia Hurtado, Maria Fernanda Del Carmen
    Schmidt, Thorsten
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2020, 38 (03) : 527 - 564
  • [5] Uniform Tightness for Time-Inhomogeneous Particle Systems and for Conditional Distributions of Time-Inhomogeneous Diffusion Processes
    Villemonais, D.
    MARKOV PROCESSES AND RELATED FIELDS, 2013, 19 (03) : 543 - 562
  • [6] TIME-INHOMOGENEOUS AND NONLINEAR QUANTUM EVOLUTIONS
    FRIGERIO, A
    LECTURE NOTES IN MATHEMATICS, 1990, 1442 : 162 - 176
  • [7] Time-inhomogeneous random Markov chains
    Innocentini, G. C. P.
    Novaes, M.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [8] Time-Inhomogeneous Diffusion Geometry and Topology
    Huguet, Guillaume
    Tong, Alexander
    Rieck, Bastian
    Huang, Jessie
    Kuchroo, Manik
    Hirn, Matthew
    Wolf, Guy
    Krishnaswamy, Smita
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2023, 5 (02): : 346 - 372
  • [9] COMPARISON OF TIME-INHOMOGENEOUS MARKOV PROCESSES
    Rueschendorf, Ludger
    Schnurr, Alexander
    Wolf, Viktor
    ADVANCES IN APPLIED PROBABILITY, 2016, 48 (04) : 1015 - 1044
  • [10] A Time-Inhomogeneous Prendiville Model with Failures and Repairs
    Giorno, Virginia
    Nobile, Amelia G.
    MATHEMATICS, 2022, 10 (02)