Nanofiber-in-microfiber carbon/silicon composite anode with high silicon content for lithium-ion batteries

被引:34
|
作者
Pei, Yixian [1 ]
Wang, Yuxin [2 ]
Chang, An-Yi [2 ]
Liao, Yixin [2 ]
Zhang, Shuan [1 ]
Wen, Xiufang [1 ]
Wang, Shengnian [2 ]
机构
[1] South China Univ Technol, Sch Chem & Chem Engn, Guangzhou 510640, Guangdong, Peoples R China
[2] Louisiana Tech Univ, Inst Micromfg, Chem Engn, POB 10137, Ruston, LA 71272 USA
基金
美国国家科学基金会;
关键词
Silicon-rich anode; Nanofiber; Microfiber; Lithium-ion batteries; Composites; ELECTRICAL ENERGY-STORAGE; POROUS CARBON NANOFIBERS; ELECTROCHEMICAL PERFORMANCE; NANOPARTICLES; FABRICATION; FIBERS;
D O I
10.1016/j.carbon.2022.11.100
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon-rich anodes are desired to leverage the energy capacity of lithium-ion batteries (LIBs) towards critical markets. We prepared new silicon-rich composite anodes with a nanofiber-in-microfiber architecture using a co-axial electrospinning setup. A polyvinyl alcohol (PVA) solution that allows high silicon content serves as the central stream, which holds silicon nanoparticles into short, branched composite nanofibers. These nanofibers were wrapped by long, ductile microfibers made of polyacrylonitrile (PAN) that is supplied in the sheath fluid. After carbonization, the received carbon/silicon composites were tested as the anode of LIBs, in which the silicon-rich nanofibers host the majority of lithium ions while their thin carbon skin originated from PVA pro-motes the conductivity and charge transfer. The outside PAN-derived microfibers provide needed structural support for those encapsulated silicon-rich nanofibers, making the final composites also an integrated, three-dimensional current collector. The nanofibrous morphology and the void space in between help accommodate the notorious volume expansion issues during lithiation/delithiation. The new composites were confirmed on their nanofiber-in-microfiber configuration. With a Si content of 40%, this unique fibrous anode material ach-ieves-900 mAh g-1 specific capacity and-90% capacity retention from cycle 50 to cycle 250 by effectively balancing some major challenges associated with silicon-rich anodes.
引用
收藏
页码:436 / 444
页数:9
相关论文
共 50 条
  • [21] Carbon-encapsulated silicon ordered nanofiber membranes as high-performance anode material for lithium-ion batteries
    Zhang, Meng
    Bai, Nan
    Lin, Wenfeng
    Wang, Hao
    Li, Jin
    Ma, Ling
    Wang, Xiaomeng
    Zhang, Dianping
    Cao, Zhijie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [23] Flexible binder-free silicon/silica/carbon nanofiber composites as anode for lithium-ion batteries
    Dirican, Mahmut
    Yildiz, Ozkan
    Lu, Yao
    Fang, Xiaomeng
    Jiang, Han
    Kizil, Huseyin
    Zhang, Xiangwu
    ELECTROCHIMICA ACTA, 2015, 169 : 52 - 60
  • [24] A high capacity silicon-graphite composite as anode for lithium-ion batteries using low content amorphous silicon and compatible binders
    Yim, Chae-Ho
    Courtel, Fabrice M.
    Abu-Lebdeh, Yaser
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (28) : 8234 - 8243
  • [25] A high-performance silicon/carbon composite as anode material for lithium ion batteries
    Bai, Yangzhi
    Cao, Xinlong
    Tian, Zhanyuan
    Yang, Shifeng
    Cao, Guolin
    NANO EXPRESS, 2021, 2 (01):
  • [26] Double-carbon protected silicon anode for high performance lithium-ion batteries
    Zhu, Linhui
    Chen, Yanli
    Wu, Changqing
    Chu, Ruixia
    Zhang, Jie
    Jiang, Heng
    Zeng, Yibo
    Zhang, Ying
    Guo, Hang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 812
  • [27] A review of the carbon coating of the silicon anode in highperformance lithium-ion batteries
    Xu, Ze-yu
    Shao, Hai-bo
    Wang, Jian-ming
    NEW CARBON MATERIALS, 2024, 39 (05) : 896 - 917
  • [28] Silicon/carbon nanocomposites used as anode materials for lithium-ion batteries
    Yong, Yingqiong
    Fan, Li-Zhen
    IONICS, 2013, 19 (11) : 1545 - 1549
  • [29] Silicon/carbon nanocomposites used as anode materials for lithium-ion batteries
    Yingqiong Yong
    Li-Zhen Fan
    Ionics, 2013, 19 : 1545 - 1549
  • [30] Electrochemical stability of silicon/carbon composite anode for lithium ion batteries
    Zuo, Pengjian
    Yin, Geping
    Ma, Yulin
    ELECTROCHIMICA ACTA, 2007, 52 (15) : 4878 - 4883