Sb Ultra-Small Nanoparticles Embedded within N, S co-Doped Flexible Carbon Nanofiber Films with Longitudinal Tunnels as High Performance Anode Materials for Sodium-Ion Batteries

被引:1
|
作者
You, Jie [1 ]
Sun, Hongran [1 ]
Wang, Xiaojun [1 ]
Li, Mai [1 ]
Sun, Jingrui [1 ]
Wang, Peng [1 ]
He, Yan [1 ]
Liu, Zhiming [1 ,2 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Electromech Engn, Shandong Engn Lab Preparat & Applicat High Perform, Qingdao 266061, Peoples R China
[2] Chinese Acad Sci, Qingdao Ind Energy Storage Res Inst, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
antimony; N; S; Sb-CNFs; longitudinal tunnels; sodium-ion batteries; electrochemical performance; ELECTRODE MATERIALS; HARD CARBON; STORAGE; NANOTUBES;
D O I
10.1002/batt.202300022
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Designing low-cost carbon-based anode with excellent electrochemical performance plays a vital role in the commercialization of sodium-ion batteries (SIBs). However, its limited theoretical specific capacity and poor rate performance seriously affect its practical applications. Simply adjusting the morphological structure or component-based regulation strategies cannot usually solve all problems efficiently. In response, one-dimensional Sb2S3 nanorods with the longitudinal distribution are used as a sacrificial template in this work by a simple electrostatic spinning method. After heat treatment, abundant longitudinal distribution channels within flexible carbon nanofibers are obtained. Meanwhile, Sb ultra-small nanoparticles can be in-situ embedded within N, S co-doped carbon matrix (N,S,Sb-CNFs). Owing to the N, S, Sb co-modification and the well-designed one-dimensional mesoporous carbon substrate, the N,S,Sb-CNFs hybrids achieve better interfacial contact with electrolyte, ameliorated electrical conductivity and distinct kinetic promotion. Furthermore, the undesired volume expansion of Sb nanoparticles during sodiation can also be efficiently suppressed. As expected, the N,S,Sb-CNFs based half-cell remains a reversible capacity of 287.8 mAh g(-1) at 1 A g(-1) even after 3500 cycles and harvests a capacity of 239.6 mAh g(-1) at a high current density of 4 A g(-1), demonstrating excellent cycling stability and rate performance. Furthermore, the assembled flexible full-cell matched with the Na3V2(PO4)(2)O2F cathode also obtains superior bending resistance and continuous discharge ability during the deformation process, proving the potential of the flexible N,S,Sb-CNFs electrode in practical applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Tin nanoparticles embedded in ordered mesoporous carbon as high-performance anode for sodium-ion batteries
    Luo, Lei
    Qiao, Hui
    Xu, Wenzheng
    Li, Dawei
    Zhu, Jiadeng
    Chen, Chen
    Lu, Yao
    Zhu, Pei
    Zhang, Xiangwu
    Wei, Qufu
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2017, 21 (05) : 1385 - 1395
  • [22] Tin nanoparticles embedded in ordered mesoporous carbon as high-performance anode for sodium-ion batteries
    Lei Luo
    Hui Qiao
    Wenzheng Xu
    Dawei Li
    Jiadeng Zhu
    Chen Chen
    Yao Lu
    Pei Zhu
    Xiangwu Zhang
    Qufu Wei
    Journal of Solid State Electrochemistry, 2017, 21 : 1385 - 1395
  • [23] N/S-Co-Doped Porous Carbon Sheets Derived from Bagasse as High-Performance Anode Materials for Sodium-Ion Batteries
    Wang, Lili
    Hu, Lei
    Yang, Wei
    Liang, Dewei
    Liu, Lingli
    Liang, Sheng
    Yang, Caoyu
    Fang, Zezhong
    Dong, Qiang
    Deng, Chonghai
    NANOMATERIALS, 2019, 9 (09)
  • [24] Construction of MnS nanocubes confined in N, S co-doped carbon as high-performance anodes for sodium-ion batteries
    Li, Chao
    Liu, Sihan
    Lu, Sitong
    Wang, Sitian
    Li, Qing
    Zhang, Yu
    Cao, Kangzhe
    INORGANIC CHEMISTRY COMMUNICATIONS, 2024, 170
  • [25] One-Pot Synthesis of Novel B, N Co-Doped Carbon Materials for High-Performance Sodium-Ion Batteries
    Hu, Yanping
    Shen, Lili
    Wei, Xianhua
    Long, Zhen
    Guo, Xiaoqiang
    Qiu, Xiaoqing
    CHEMISTRYSELECT, 2019, 4 (21): : 6445 - 6450
  • [26] N, S co-doped porous carbon microtubes with high charge/discharge rates for sodium-ion batteries
    Li, Junfeng
    Han, Lu
    Zhang, Dafeng
    Li, Jinliang
    Lu, Ting
    Wang, Xianghui
    Pan, Likun
    INORGANIC CHEMISTRY FRONTIERS, 2019, 6 (08): : 2104 - 2111
  • [27] Sulfur-doped carbon nanofibers as stable and high performance anode materials for sodium-ion batteries
    Lu, Mengwei
    Huang, Ying
    Du, Xianping
    Sheng, Xitong
    SUSTAINABLE ENERGY & FUELS, 2024, 8 (14): : 3056 - 3064
  • [28] Preparation of nitrogen- and phosphorous co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries
    Li, Yueming
    Wang, Zhiguang
    Li, Linlin
    Peng, Shengjie
    Zhang, Long
    Srinivasan, Madhavi
    Ramakrishna, Seeram
    CARBON, 2016, 99 : 556 - 563
  • [29] NiP nanoparticles encapsulated in lamellar carbon as high-performance anode materials for sodium-ion batteries
    Sun, Bingxue
    Ni, Jiangfeng
    ELECTROCHEMISTRY COMMUNICATIONS, 2022, 141
  • [30] Facile Synthesis of Ultra-Small Few-Layer Nanostructured MoSe2 Embedded on N, P Co-Doped Bio-Carbon for High-Performance Half/Full Sodium-Ion and Potassium-Ion Batteries
    Zeng, Lingxing
    Kang, Biyu
    Luo, Fenqiang
    Fang, Yixing
    Zheng, Cheng
    Liu, Junbin
    Liu, Renpin
    Li, Xinye
    Chen, Qinghua
    Wei, Mingdeng
    Qian, Qingrong
    CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (58) : 13411 - 13421