Adelic descent for K-theory

被引:0
|
作者
Kim, Hyungseop [1 ]
机构
[1] Univ Toronto, Dept Math, Bahen Ctr, 40 St George St, Toronto, ON M5S 2E4, Canada
来源
关键词
Algebraic K-theory; localizing invariants; descent for K-theory; higher adeles;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an adelic descent result for localizing invariants: for each Noetherian scheme X of finite Krull dimension and any localizing in-variant E, e.g., algebraic K-theory of Bass-Thomason, there is an equivalence E(X) ? limE(A(red)((SIC))(X)), where A(red)((SIC))(X) denotes Beilinson's semi-cosimplicial ring of reduced adeles on X. We deduce the equivalence from a closely re-lated cubical descent result, which we prove by establishing certain exact se-quences of perfect module categories over adele rings.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [21] On the etale descent problem for topological cyclic homology and algebraic K-theory
    Tsalidis, S
    K-THEORY, 2000, 21 (02): : 151 - 199
  • [22] K-theory, Hermitian K-theory and the Karoubi Tower
    Kobal, D
    K-THEORY, 1999, 17 (02): : 113 - 140
  • [23] On the algebraic K-theory of the complex K-theory spectrum
    Christian Ausoni
    Inventiones mathematicae, 2010, 180 : 611 - 668
  • [24] THE RELATION OF QUADRATIC K-THEORY TO HERMITIAN K-THEORY
    GIFFEN, CH
    COMMUNICATIONS IN ALGEBRA, 1987, 15 (05) : 971 - 984
  • [25] Topological K-theory of algebraic K-theory spectra
    Mitchell, SA
    K-THEORY, 2000, 21 (03): : 229 - 247
  • [26] Algebraic K-theory and the conjectural Leibniz K-theory
    Loday, JL
    K-THEORY, 2003, 30 (02): : 105 - 127
  • [27] On the algebraic K-theory of the complex K-theory spectrum
    Ausoni, Christian
    INVENTIONES MATHEMATICAE, 2010, 180 (03) : 611 - 668
  • [28] Twisted K-theory and K-theory of bundle gerbes
    Bouwknegt, P
    Carey, AL
    Mathai, V
    Murray, MK
    Stevenson, D
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 228 (01) : 17 - 45
  • [29] Twisted K-Theory and K-Theory of Bundle Gerbes
    Peter Bouwknegt
    Alan L. Carey
    Varghese Mathai
    Michael K. Murray
    Danny Stevenson
    Communications in Mathematical Physics, 2002, 228 : 17 - 49
  • [30] K-Theory
    Abrams, Gene
    Ara, Pere
    Siles Molina, Mercedes
    LEAVITT PATH ALGEBRAS, 2017, 2191 : 219 - 257