Multiscale anchor box and optimized classification with faster R-CNN for object detection

被引:4
|
作者
Wang, Sheng-Ye [1 ]
Qu, Zhong [1 ,2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Coll Comp Sci & Technol, Chongqing, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Coll Comp Sci & Technol, 2 Chongwen Rd, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
image processing; image recognition; object detection; FEATURES;
D O I
10.1049/ipr2.12714
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For the two-stage object detector as a faster region-convolutional neural network (Faster R-CNN), upgrading the accuracy of object recognition depends on the proposal box, which is generated by the region proposal algorithms. Due to the limitations of the anchor setting of Faster RCNN, the size of the proposal box generated by the region proposal network (RPN) used is large, which would easily cause a great number of overflows in the sliding search. To improve the accuracy of object detection and remit the overflow problem of the anchor box, multi-scale anchor box and moving overflow anchor box strategies are introduced here. Then, to increase the positive sample range of the foreground, the hierarchical weight cross entropy classification function is set for binary classification in the RPN network. These strategies could improve the accuracy of object detection. The experimental result achieves 76.2% AP on the Pascal VOC 2007(VOC 07) dataset, which is 2.7% higher than the Faster R-CNN. The result of the Pascal VOC 2012(VOC 12) test, we achieve 75.6% AP, is improved by 2.5% compared with the Faster R-CNN.
引用
收藏
页码:1322 / 1333
页数:12
相关论文
共 50 条
  • [1] Pulmonary Nodule Detection Based on Faster R-CNN With Adaptive Anchor Box
    Nguyen, Chi Cuong
    Tran, Giang Son
    Nguyen, Van Thi
    Burie, Jean-Christophe
    Nghiem, Thi Phuong
    IEEE ACCESS, 2021, 9 : 154740 - 154751
  • [2] Faster R-CNN with improved anchor box for cell recognition
    Wen, Tingxi
    Wu, Hanxiao
    Du, Yu
    Huang, Chuanbo
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (06) : 7772 - 7786
  • [3] An Improved Faster R-CNN for Object Detection
    Liu, Yu
    2018 11TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2018, : 119 - 123
  • [4] Ship Detection Based on Faster R-CNN in SAR Imagery by Anchor Box Optimization
    Kumar, Durga
    Zhang, Xiaoling
    ICCAIS 2019: THE 8TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES, 2019,
  • [5] Region-based Object Detection and Classification using Faster R-CNN
    Abbas, Syed Mazhar
    Singh, Shailendra Narayan
    2018 4TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE & COMMUNICATION TECHNOLOGY (CICT), 2018,
  • [6] Street Object Detection Based on Faster R-CNN
    Cai, Wendi
    Li, Jiadie
    Xie, Zhongzhao
    Zhao, Tao
    Lu, Kang
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 9500 - 9503
  • [7] Study Of Object Detection Based On Faster R-CNN
    Liu, Bin
    Zhao, Wencang
    Sun, Qiaoqiao
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 6233 - 6236
  • [8] Comparison of faster R-CNN models for object detection
    Lee, Chungkeun
    Kim, H. Jin
    Oh, Kyeong Won
    2016 16TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2016, : 107 - 110
  • [9] Feature Enhanced Faster R-CNN for Object Detection
    Jiang, Jun
    Hu, Zhongbing
    MIPPR 2019: AUTOMATIC TARGET RECOGNITION AND NAVIGATION, 2020, 11429
  • [10] An Improved Faster R-CNN for Small Object Detection
    Cao, Changqing
    Wang, Bo
    Zhang, Wenrui
    Zeng, Xiaodong
    Yan, Xu
    Feng, Zhejun
    Liu, Yutao
    Wu, Zengyan
    IEEE ACCESS, 2019, 7 : 106838 - 106846