Bayesian estimation of the Kullback-Leibler divergence for categorical systems using mixtures of Dirichlet priors

被引:0
|
作者
Camaglia, Francesco [1 ,2 ]
Nemenman, Ilya [3 ]
Mora, Thierry [1 ,2 ]
Walczak, Aleksandra M. [1 ,2 ]
机构
[1] Sorbonne Univ, PSL Univ, Lab Phys Ecole Normale Super, CNRS, F-75005 Paris, France
[2] Univ Paris, F-75005 Paris, France
[3] Emory Univ, Dept Phys, Dept Biol & Initiat Theory & Modeling Living Syst, Atlanta, GA 30322 USA
基金
欧洲研究理事会;
关键词
NONPARAMETRIC-ESTIMATION; ENTROPY ESTIMATION; PROBABILITY; INFORMATION; INFERENCE;
D O I
10.1103/PhysRevE.109.024305
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In many applications in biology, engineering, and economics, identifying similarities and differences between distributions of data from complex processes requires comparing finite categorical samples of discrete counts. Statistical divergences quantify the difference between two distributions. However, their estimation is very difficult and empirical methods often fail, especially when the samples are small. We develop a Bayesian estimator of the Kullback-Leibler divergence between two probability distributions that makes use of a mixture of Dirichlet priors on the distributions being compared. We study the properties of the estimator on two examples: probabilities drawn from Dirichlet distributions and random strings of letters drawn from Markov chains. We extend the approach to the squared Hellinger divergence. Both estimators outperform other estimation techniques, with better results for data with a large number of categories and for higher values of divergences.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Estimation of the Weibull parameters by Kullback-Leibler divergence of Survival functions
    Yari, Gholamhossein
    Mirhabibi, Alireza
    Saghafi, Abolfazl
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (01): : 187 - 192
  • [42] Anomaly Detection Using the Kullback-Leibler Divergence Metric
    Afgani, Mostafa
    Sinanovic, Sinan
    Haas, Harald
    ISABEL: 2008 FIRST INTERNATIONAL SYMPOSIUM ON APPLIED SCIENCES IN BIOMEDICAL AND COMMMUNICATION TECHNOLOGIES, 2008, : 197 - 201
  • [43] Android Malware Detection Using Kullback-Leibler Divergence
    Cooper, Vanessa N.
    Haddad, Hisham M.
    Shahriar, Hossain
    ADCAIJ-ADVANCES IN DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE JOURNAL, 2014, 3 (02): : 17 - 24
  • [44] An Asymptotic Test for Bimodality Using The Kullback-Leibler Divergence
    Contreras-Reyes, Javier E.
    SYMMETRY-BASEL, 2020, 12 (06):
  • [45] Estimating Kullback-Leibler Divergence Using Kernel Machines
    Ahuja, Kartik
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 690 - 696
  • [46] Optimal robust estimates using the Kullback-Leibler divergence
    Yohai, Victor J.
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (13) : 1811 - 1816
  • [47] Human promoter recognition using kullback-leibler divergence
    Zeng, Ja
    Cao, Xiao-Qin
    Yan, Hong
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 3319 - 3325
  • [48] Bayesian prospective detection of small area health anomalies using Kullback-Leibler divergence
    Rotejanaprasert, Chawarat
    Lawson, Andrew
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2018, 27 (04) : 1076 - 1087
  • [49] Bayesian optimistic Kullback-Leibler exploration
    Lee, Kanghoon
    Kim, Geon-Hyeong
    Ortega, Pedro
    Lee, Daniel D.
    Kim, Kee-Eung
    MACHINE LEARNING, 2019, 108 (05) : 765 - 783
  • [50] Employing Kullback-Leibler divergence and Latent Dirichlet Allocation for fraud detection in telecommunications
    Olszewski, Dominik
    INTELLIGENT DATA ANALYSIS, 2012, 16 (03) : 467 - 485