Stabilization temperature prediction in carbon fiber production using empirical mode decomposition and long short-term memory network

被引:2
|
作者
Guo, Yuanjing [1 ,3 ]
Jiang, Shaofei [2 ]
Fu, Jiangen [3 ]
Yang, Youdong [1 ]
Bao, Yumei [1 ]
Jin, Xiaohang [2 ]
机构
[1] Zhejiang Univ Technol, Zhijiang Coll, Shaoxing 312030, Peoples R China
[2] Zhejiang Univ Technol, Coll Mech Engn, Hangzhou 310023, Peoples R China
[3] Zhejiang Jinggong Technol Co Ltd, Shaoxing 312030, Peoples R China
关键词
Carbon fiber; Stabilization temperature; Prediction; Empirical mode decomposition; Long short-term memory network; ARTIFICIAL-INTELLIGENCE; MACHINE; OPTIMIZATION; ALGORITHM;
D O I
10.1016/j.jclepro.2023.139345
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Carbon fiber holds significant promise as a sustainable material with diverse applications. The production of carbon fiber involves a critical process known as oxidative stabilization. Optimizing this process necessitates accurate prediction of the stabilization temperature. However, predicting the stabilization temperature based on easily available heater power data encounters formidable challenges due to factors like nonlinearity, nonuniformity, time delay and time-varying effect. To address these issues, this study proposed an innovative method for predicting the stabilization temperature using empirical mode decomposition (EMD) and long shortterm memory (LSTM) network. The distinctive aspect of this proposed method lies in the utilization of two EMDbased reconstruction approaches to preprocess the heater power training and testing data. This helps mitigate the nonlinearity between stabilization temperature and heater power output during the machine learning network training phase and alleviate the time-varying effect of heater power testing data relative to the training data during the network testing phase. Considering the hysteresis effect of heater power output on stabilization temperature, an LSTM network was integrated for accurate stabilization temperature prediction. The proposed EMD-LSTM network model was implemented for stabilization temperature predictions in six oxidation ovens of a carbon fiber production line. The average metrics for predicted results using this method are notably superior, with values of 0.0153 degrees C for root-mean-square error (RMSE), 0.3711 for relative RMSE (rRMSE), 0.0117 degrees C for mean absolute error (MAE), and 0.2838 for relative MAE (rMAE), surpassing the results obtained from the LSTM network model trained and tested using unreconstructed data. The comparative analysis further demonstrates the advantageous performance of the proposed EMD-LSTM network model compared to models based on five widely used machine learning networks. This study offers valuable insights for optimizing the oxidative stabilization process in carbon fiber production, thereby reducing waste heat and exhaust emissions, and promoting cleaner carbon fiber production.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy Long Short-term memory neural network
    Duan, Jiandong
    Wang, Peng
    Ma, Wentao
    Tian, Xuan
    Fang, Shuai
    Cheng, Yulin
    Chang, Ying
    Liu, Haofan
    ENERGY, 2021, 214
  • [42] Short-Term Load Forecasting using A Long Short-Term Memory Network
    Liu, Chang
    Jin, Zhijian
    Gu, Jie
    Qiu, Caiming
    2017 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE EUROPE (ISGT-EUROPE), 2017,
  • [43] Long Short-term Memory Neural Network for Network Traffic Prediction
    Zhuo, Qinzheng
    Li, Qianmu
    Yan, Han
    Qi, Yong
    2017 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (IEEE ISKE), 2017,
  • [44] Ultra short term probability prediction of wind power based on wavelet decomposition and long short-term memory network
    Wang, Peng
    Sun, Yonghui
    Thai, Suwei
    Wu, Xiaopeng
    Zhou, Yan
    Hou, Dongchen
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 2061 - 2066
  • [45] Attention-based long short-term memory network temperature prediction model
    Kun, Xiao
    Shan, Tian
    Yi, Tan
    Chao, Chen
    PROCEEDINGS OF 2021 7TH INTERNATIONAL CONFERENCE ON CONDITION MONITORING OF MACHINERY IN NON-STATIONARY OPERATIONS (CMMNO), 2021, : 278 - 281
  • [46] A Short-Term Precipitation Prediction Model Based on Spatiotemporal Convolution Network and Ensemble Empirical Mode Decomposition
    Yunan Qiu
    Zhenyu Lu
    Shanpu Fang
    IEEE/CAA Journal of Automatica Sinica, 2022, 9 (04) : 738 - 740
  • [47] A Short-Term Precipitation Prediction Model Based on Spatiotemporal Convolution Network and Ensemble Empirical Mode Decomposition
    Qiu, Yunan
    Lu, Zhenyu
    Fang, Shanpu
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (04) : 738 - 740
  • [48] A Hybrid Short-Term Traffic Flow Multistep Prediction Method Based on Variational Mode Decomposition and Long Short-Term Memory Model
    Bing, Qichun
    Shen, Fuxin
    Chen, Xiufeng
    Zhang, Weijian
    Hu, Yanran
    Qu, Dayi
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [49] Long short-term memory neural network for glucose prediction
    Carrillo-Moreno, Jaime
    Perez-Gandia, Carmen
    Sendra-Arranz, Rafael
    Garcia-Saez, Gema
    Hernando, M. Elena
    Gutierrez, Alvaro
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (09): : 4191 - 4203
  • [50] Carbon price prediction based on advanced decomposition and long short-term memory hybrid model
    Cheng, Miao
    Xu, Ke
    Geng, Guangjie
    Liu, Huan
    Wang, Huijun
    JOURNAL OF CLEANER PRODUCTION, 2024, 451