Engineered circular guide RNAs boost CRISPR/Cas12a-and CRISPR/Cas13d-based DNA and RNA editing

被引:7
|
作者
Zhang, Xin [1 ,2 ]
Wang, Xinlong [2 ]
Lv, Jie [2 ]
Huang, Hongxin [3 ]
Wang, Jiahong [2 ]
Zhuo, Ma [2 ]
Tan, Zhihong [2 ]
Huang, Guanjie [2 ]
Liu, Jiawei [2 ]
Liu, Yuchen [2 ]
Li, Mengrao [2 ]
Lin, Qixiao [2 ]
Li, Lian [2 ]
Ma, Shufeng [2 ,4 ]
Huang, Tao [2 ]
Lin, Ying [2 ]
Zhao, Xiaoyang [5 ]
Rong, Zhili [1 ,2 ,3 ]
机构
[1] Southern Med Univ, Affiliated Dongguan Hosp, Dongguan Inst Clin Canc Res, Dongguan 523058, Peoples R China
[2] Southern Med Univ, Canc Res Inst, Natl Clin Res Ctr Kidney Dis, Key Lab Organ Failure Res,Minist Educ,State Key La, Guangzhou 510515, Peoples R China
[3] Southern Med Univ, Dermatol Hosp, Guangzhou 510091, Peoples R China
[4] Southern Med Univ, Shenzhen Hosp, Dept Nephrol, Shenzhen 518110, Peoples R China
[5] Southern Med Univ, Natl Clin Res Ctr Kidney Dis, State Key Lab Organ Failure Res, Dept Dev,Sch Basic Med Sci,Key Lab Organ Failure R, Guangzhou 510515, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
cgRNA; Engineered circular gRNA; Cas12a; Cas13d; Gene activation; DNA editing; RNA editing; IN-VIVO; CPF1; SPECIFICITIES;
D O I
10.1186/s13059-023-02992-z
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundThe CRISPR/Cas12a and CRISPR/Cas13d systems are widely used for fundamental research and hold great potential for future clinical applications. However, the short half-life of guide RNAs (gRNAs), particularly free gRNAs without Cas nuclease binding, limits their editing efficiency and durability.ResultsHere, we engineer circular free gRNAs (cgRNAs) to increase their stability, and thus availability for Cas12a and Cas13d processing and loading, to boost editing. cgRNAs increases the efficiency of Cas12a-based transcription activators and genomic DNA cleavage by approximately 2.1- to 40.2-fold for single gene editing and 1.7- to 2.1-fold for multiplexed gene editing than their linear counterparts, without compromising specificity, across multiple sites and cell lines. Similarly, the RNA interference efficiency of Cas13d is increased by around 1.8-fold. In in vivo mouse liver, cgRNAs are more potent in activating gene expression and cleaving genomic DNA.ConclusionsCgRNAs enable more efficient programmable DNA and RNA editing for Cas12a and Cas13d with broad applicability for fundamental research and gene therapy.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Screening for functional circular RNAs using the CRISPR-Cas13 system
    Li, Siqi
    Li, Xiang
    Xue, Wei
    Zhang, Lin
    Yang, Liang-Zhong
    Cao, Shi-Meng
    Lei, Yun-Ni
    Liu, Chu-Xiao
    Guo, Si-Kun
    Shan, Lin
    Wu, Man
    Tao, Xiao
    Zhang, Jia-Lin
    Gao, Xiang
    Zhang, Jun
    Wei, Jia
    Li, Jinsong
    Yang, Li
    Chen, Ling-Ling
    NATURE METHODS, 2021, 18 (01) : 51 - +
  • [22] CRISPR-Cas9-mediated genome editing and guide RNA design
    Wiles, Michael V.
    Qin, Wenning
    Cheng, Albert W.
    Wang, Haoyi
    MAMMALIAN GENOME, 2015, 26 (9-10) : 501 - 510
  • [23] CRISPR–Cas9-mediated genome editing and guide RNA design
    Michael V. Wiles
    Wenning Qin
    Albert W. Cheng
    Haoyi Wang
    Mammalian Genome, 2015, 26 : 501 - 510
  • [24] A Conformational Restriction Strategy for the Control of CRISPR/Cas Gene Editing with Photoactivatable Guide RNAs
    Sun, Ying-Jie
    Chen, Wen-Da
    Liu, Ji
    Li, Jun-Jin
    Zhang, Yu
    Cai, Wei-Qi
    Liu, Li
    Tang, Xin-Jing
    Hou, Jian
    Wang, Ming
    Cheng, Liang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (05)
  • [25] Versatility of chemically synthesized guide RNAs for CRISPR-Cas9 genome editing
    Kelley, Melissa L.
    Strezoska, Zaklina
    He, Kaizhang
    Vermeulen, Annaleen
    Smith, Anja van Brabant
    JOURNAL OF BIOTECHNOLOGY, 2016, 233 : 74 - 83
  • [26] Photocleavable guide RNAs for controllable genome editing with CRISPR/Cas9 system
    Novopashina, D.
    Khabardina, E.
    Vokhtantsev, I.
    Kim, D.
    Venyaminova, A.
    Zharkov, D.
    FEBS OPEN BIO, 2019, 9 : 400 - 400
  • [27] Precise RNA targeting with CRISPR-Cas13d
    Hart, Sydney K.
    Mueller, Simon
    Wessels, Hans-Hermann
    Mendez-Mancilla, Alejandro
    Drabavicius, Gediminas
    Choi, Olivia
    Sanjana, Neville E.
    NATURE BIOTECHNOLOGY, 2025,
  • [28] CRISPR-Cas13: Pioneering RNA Editing for Nucleic Acid Therapeutics
    Zhu, Guanglin
    Zhou, Xinzhi
    Wen, Mingzhang
    Qiao, Jianjun
    Li, Guo
    Yao, Yuan
    BIODESIGN RESEARCH, 2024, 6
  • [29] CRISPR-Cas13-mediated RNA editing in the silkworm Bombyx mori
    Tang, Yao-Hao
    Zhang, Xing
    Dai, Zong-Cai
    Li, Hao
    Yang, Yan
    Zhao, Tu-Jing
    Yuan, Dong-Qin
    Qian, Wen-Liang
    Cheng, Dao-Jun
    ZOOLOGICAL RESEARCH, 2024, 45 (06) : 1249 - 1260
  • [30] CRISPR-Cas13-mediated RNA editing in the silkworm Bombyx mori
    YaoHao Tang
    Xing Zhang
    ZongCai Dai
    Hao Li
    Yan Yang
    TuJing Zhao
    DongQin Yuan
    WenLiang Qian
    DaoJun Cheng
    Zoological Research, 2024, 45 (06) : 1249 - 1260