Research on the Method of Counting Wheat Ears via Video Based on Improved YOLOv7 and DeepSort

被引:12
|
作者
Wu, Tianle [1 ]
Zhong, Suyang [1 ]
Chen, Hao [1 ]
Geng, Xia [1 ]
机构
[1] Shandong Agr Univ, Coll Informat Sci & Engn, Tai An 271018, Peoples R China
关键词
wheat-ear counting; improved YOLOv7; DeepSort; unmanned aerial vehicle (UAV);
D O I
10.3390/s23104880
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The number of wheat ears in a field is an important parameter for accurately estimating wheat yield. In a large field, however, it is hard to conduct an automated and accurate counting of wheat ears because of their density and mutual overlay. Unlike the majority of the studies conducted on deep learning-based methods that usually count wheat ears via a collection of static images, this paper proposes a counting method based directly on a UAV video multi-objective tracking method and better counting efficiency results. Firstly, we optimized the YOLOv7 model because the basis of the multi-target tracking algorithm is target detection. Simultaneously, the omni-dimensional dynamic convolution (ODConv) design was applied to the network structure to significantly improve the feature-extraction capability of the model, strengthen the interaction between dimensions, and improve the performance of the detection model. Furthermore, the global context network (GCNet) and coordinate attention (CA) mechanisms were adopted in the backbone network to implement the effective utilization of wheat features. Secondly, this study improved the DeepSort multi-objective tracking algorithm by replacing the DeepSort feature extractor with a modified ResNet network structure to achieve a better extraction of wheat-ear-feature information, and the constructed dataset was then trained for the re-identification of wheat ears. Finally, the improved DeepSort algorithm was used to calculate the number of different IDs that appear in the video, and an improved method based on YOLOv7 and DeepSort algorithms was then created to calculate the number of wheat ears in large fields. The results show that the mean average precision (mAP) of the improved YOLOv7 detection model is 2.5% higher than that of the original YOLOv7 model, reaching 96.2%. The multiple-object tracking accuracy (MOTA) of the improved YOLOv7-DeepSort model reached 75.4%. By verifying the number of wheat ears captured by the UAV method, it can be determined that the average value of an L1 loss is 4.2 and the accuracy rate is between 95 and 98%; thus, detection and tracking methods can be effectively performed, and the efficient counting of wheat ears can be achieved according to the ID value in the video.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Research on Underwater Small Target Detection Algorithm Based on Improved YOLOv7
    Yi, Weiguo
    Wang, Bo
    IEEE ACCESS, 2023, 11 : 66818 - 66827
  • [32] Transparent Component Defect Detection Method Based on Improved YOLOv7 Algorithm
    Xiao, Qixun
    Huang, Jingde
    Huang, Zhangyu
    Li, Chenyu
    Xu, Jie
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (14)
  • [33] Grape Target Detection Method in Orchard Environment Based on Improved YOLOv7
    Sun, Fuchun
    Lv, Qiurong
    Bian, Yuechao
    He, Renwei
    Lv, Dong
    Gao, Leina
    Wu, Haorong
    Li, Xiaoxiao
    AGRONOMY-BASEL, 2025, 15 (01):
  • [34] Underwater Target Detection Based on Improved YOLOv7
    Liu, Kaiyue
    Sun, Qi
    Sun, Daming
    Peng, Lin
    Yang, Mengduo
    Wang, Nizhuan
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (03)
  • [35] A Pineapple Target Detection Method in a Field Environment Based on Improved YOLOv7
    Lai, Yuhao
    Ma, Ruijun
    Chen, Yu
    Wan, Tao
    Jiao, Rui
    He, Huandong
    APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [36] Improved Apple Fruit Target Recognition Method Based on YOLOv7 Model
    Yang, Huawei
    Liu, Yinzeng
    Wang, Shaowei
    Qu, Huixing
    Li, Ning
    Wu, Jie
    Yan, Yinfa
    Zhang, Hongjian
    Wang, Jinxing
    Qiu, Jianfeng
    AGRICULTURE-BASEL, 2023, 13 (07):
  • [37] Mask wearing detection based on improved YOLOv7
    Fu Hui-chen
    Gao Jun-wei
    Che Lu-yang
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2023, 38 (08) : 1139 - 1147
  • [38] Helmet Detection Algorithm Based on Improved YOLOv7
    Yilihamu, Yaermaimaiti
    Liu, Yajie
    Xi, Lingfei
    Wang, Ruohao
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2024, 58 (06) : 642 - 655
  • [39] Ship Detection and Recognition Based on Improved YOLOv7
    Wu, Wei
    Li, Xiulai
    Hu, Zhuhua
    Liu, Xiaozhang
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 76 (01): : 489 - 498
  • [40] Underwater Target Detection Based on Improved YOLOv7
    Fu, Junshang
    Tian, Ying
    IAENG International Journal of Computer Science, 2024, 51 (04) : 422 - 429