A Transformer-Based Knowledge Distillation Network for Cortical Cataract Grading

被引:1
|
作者
Wang, Jinhong [1 ,2 ]
Xu, Zhe [3 ]
Zheng, Wenhao [1 ,2 ]
Ying, Haochao [4 ]
Chen, Tingting [1 ,2 ]
Liu, Zuozhu [5 ]
Chen, Danny Z. [6 ]
Yao, Ke [3 ]
Wu, Jian [7 ,8 ]
机构
[1] Zhejiang Univ, Affiliated Hosp 2, Coll Comp Sci & Technol, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Affiliated Hosp 2, Eye Ctr, Hangzhou 310027, Peoples R China
[3] Zhejiang Univ, Affiliated Hosp 2, Eye Ctr, Sch Med, Hangzhou 310009, Zhejiang, Peoples R China
[4] Zhejiang Univ, Sch Publ Hlth, Hangzhou 310058, Peoples R China
[5] Zhejiang Univ, ZJU UIUC Inst, Res & Dev Ctr Intelligent Healthcare, ZJU Angelalign Inc, Haining 310058, Peoples R China
[6] Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA
[7] Zhejiang Univ, Affiliated Hosp 2, Sch Med, Sch Publ Hlth, Hangzhou 310058, Peoples R China
[8] Zhejiang Univ, Inst Wenzhou, Hangzhou 310058, Peoples R China
关键词
Cataracts; Transformers; Annotations; Feature extraction; Image edge detection; Fuses; Knowledge engineering; Cataract grading; knowledge distillation; transformer; medical imaging classification; CLASSIFICATION; IMAGES;
D O I
10.1109/TMI.2023.3327274
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Cortical cataract, a common type of cataract, is particularly difficult to be diagnosed automatically due to the complex features of the lesions. Recently, many methods based on edge detection or deep learning were proposed for automatic cataract grading. However, these methods suffer a large performance drop in cortical cataract grading due to the more complex cortical opacities and uncertain data. In this paper, we propose a novel Transformer-based Knowledge Distillation Network, called TKD-Net, for cortical cataract grading. To tackle the complex opacity problem, we first devise a zone decomposition strategy to extract more refined features and introduce special sub-scores to consider critical factors of clinical cortical opacity assessment (location, area, density) for comprehensive quantification. Next, we develop a multi-modal mix-attention Transformer to efficiently fuse sub-scores and image modality for complex feature learning. However, obtaining the sub-score modality is a challenge in the clinic, which could cause the modality missing problem instead. To simultaneously alleviate the issues of modality missing and uncertain data, we further design a Transformer-based knowledge distillation method, which uses a teacher model with perfect data to guide a student model with modality-missing and uncertain data. We conduct extensive experiments on a dataset of commonly-used slit-lamp images annotated by the LOCS III grading system to demonstrate that our TKD-Net outperforms state-of-the-art methods, as well as the effectiveness of its key components.
引用
收藏
页码:1089 / 1101
页数:13
相关论文
共 50 条
  • [31] HIERARCHICAL TRANSFORMER-BASED LARGE-CONTEXT END-TO-END ASR WITH LARGE-CONTEXT KNOWLEDGE DISTILLATION
    Masumura, Ryo
    Makishima, Naoki
    Ihori, Mana
    Takashima, Akihiko
    Tanaka, Tomohiro
    Orihashi, Shota
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 5879 - 5883
  • [32] Smart Transformer-based Network Reconfiguration for Improved Resilience
    Hrishikesan, V. M.
    Najera-Aleson, Clara
    Langwasser, Marius
    Liserre, Marco
    2023 IEEE BELGRADE POWERTECH, 2023,
  • [33] A Novel Transformer-Based Attention Network for Image Dehazing
    Gao, Guanlei
    Cao, Jie
    Bao, Chun
    Hao, Qun
    Ma, Aoqi
    Li, Gang
    SENSORS, 2022, 22 (09)
  • [34] Transformer-based rapid human pose estimation network
    Wang, Dong
    Xie, Wenjun
    Cai, Youcheng
    Li, Xinjie
    Liu, Xiaoping
    COMPUTERS & GRAPHICS-UK, 2023, 116 : 317 - 326
  • [35] Transformer-Based Graph Convolutional Network for Sentiment Analysis
    AlBadani, Barakat
    Shi, Ronghua
    Dong, Jian
    Al-Sabri, Raeed
    Moctard, Oloulade Babatounde
    APPLIED SCIENCES-BASEL, 2022, 12 (03):
  • [36] Symmetric transformer-based network for unsupervised image registration
    Ma, Mingrui
    Xu, Yuanbo
    Song, Lei
    Liu, Guixia
    KNOWLEDGE-BASED SYSTEMS, 2022, 257
  • [37] TDNet: transformer-based network for point cloud denoising
    Xu, Xueli
    Geng, Guohua
    Cao, Xin
    Li, Kang
    Zhou, Mingquan
    APPLIED OPTICS, 2022, 61 (06) : C80 - C88
  • [38] A Transformer-Based Network for Deformable Medical Image Registration
    Wang, Yibo
    Qian, Wen
    Li, Mengqi
    Zhang, Xuming
    ARTIFICIAL INTELLIGENCE, CICAI 2022, PT I, 2022, 13604 : 502 - 513
  • [39] Transformer-based ASR Incorporating Time-reduction Layer and Fine-tuning with Self-Knowledge Distillation
    Haidar, Md Akmal
    Xing, Chao
    Rezagholizadeh, Mehdi
    INTERSPEECH 2021, 2021, : 2102 - 2106
  • [40] An attentive convolutional transformer-based network for road safety
    Jayanthan, K. S.
    Domnic, S.
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (14): : 16351 - 16377