Spin-Orbit Torque and Geometrical Backscattering

被引:0
|
作者
Tan, Seng Ghee [1 ]
Huang, Che-Chun [2 ]
Jalil, Mansoor B. A. [3 ]
Chang, Ching-Ray [2 ,4 ]
Cheng, Szu-Cheng [1 ,5 ]
机构
[1] Chinese Culture Univ, Dept Optoelect Phys, 55 Hwa Kang Rd, Taipei 11114, Taiwan
[2] Natl Taiwan Univ, Dept Phys, Roosevelt Rd, Taipei 10617, Taiwan
[3] Natl Univ Singapore, Dept Elect & Comp Engn, 4 Engn Dr 3, Singapore 117576, Singapore
[4] Chung Yuan Christian Univ, Quantum Informat Ctr, Zhongbei Rd, Taoyuan City, Taiwan
[5] Natl Cent Univ, Dept Phys, 300 Zhongda Rd, Taoyuan City 320317, Taiwan
关键词
Curved space; spin-orbit coupling; spin torque;
D O I
10.1142/S2010324723500339
中图分类号
O59 [应用物理学];
学科分类号
摘要
We show in this paper that the technologically relevant field-like spin-orbit torque (SOT) shows resilience against the geometrical effect of electron backscattering. As a device grows smaller in size, the effect of geometry on physical properties like spin torque, and hence switching current could place a physical limit on the continued shrinkage of such a device - a necessary trend of all memory devices (MRAM). The geometrical effect of curves has been shown to impact quantum transport and topological transition of Dirac and topological systems. In our work, we have ruled out the potential threat of line curves degrading the effectiveness of SOT switching. In other words, SOT switching will be resilient against the influence of curves that line the circumferences of defects in the events of electron backscattering, which commonly happens in the channel of modern electronic devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Experimental observation of the optical spin-orbit torque
    Tesařová N.
    Němec P.
    Rozkotová E.
    Zemen J.
    Janda T.
    Butkovičová D.
    Trojánek F.
    Olejník K.
    Novák V.
    Malý P.
    Jungwirth T.
    Nature Photonics, 2013, 7 (6) : 492 - 498
  • [22] Unidirectional magnetoresistance and spin-orbit torque in NiMnSb
    Zelezny, J.
    Fang, Z.
    Olejnik, K.
    Patchett, J.
    Gerhard, F.
    Gould, C.
    Molenkamp, L. W.
    Gomez-Olivella, C.
    Zemen, J.
    Tichy, T.
    Jungwirth, T.
    Ciccarelli, C.
    PHYSICAL REVIEW B, 2021, 104 (05)
  • [23] Effects of spin-orbit torque on the magnon gas
    Demidov, V. E.
    Urazhdin, S.
    Divinskiy, B.
    Demokritov, S. O.
    2018 IEEE INTERNATIONAL MAGNETIC CONFERENCE (INTERMAG), 2018,
  • [24] Switching of Perpendicular Magnetization by Spin-Orbit Torque
    Zhu, Lijun
    ADVANCED MATERIALS, 2023, 35 (48)
  • [25] Benchmarking of spin-orbit torque vs spin-transfer torque devices
    Kumar, Piyush
    Naeemi, Azad
    APPLIED PHYSICS LETTERS, 2022, 121 (11)
  • [26] Efficient micromagnetic modelling of spin-transfer torque and spin-orbit torque
    Abert, Claas
    Bruckner, Florian
    Vogler, Christoph
    Suess, Dieter
    AIP ADVANCES, 2018, 8 (05)
  • [27] Coherent spin waves driven by optical spin-orbit torque
    Choi, Gyung-Min
    Lee, Dong-Kyu
    Lee, Kyung-Jin
    Lee, Hyun-Woo
    PHYSICAL REVIEW B, 2020, 102 (01)
  • [28] Spin-orbit torque-driven propagating spin waves
    Fulara, H.
    Zahedinejad, M.
    Khymyn, R.
    Awad, A. A.
    Muralidhar, S.
    Dvornik, M.
    Akerman, J.
    SCIENCE ADVANCES, 2019, 5 (09):
  • [29] Spin valve effect induced by spin-orbit torque switching
    Zhang, R. Q.
    Su, J.
    Cai, J. W.
    Shi, G. Y.
    Li, F.
    Liao, L. Y.
    Pan, F.
    Song, C.
    APPLIED PHYSICS LETTERS, 2019, 114 (09)
  • [30] Spin-orbit torque control of spin waves in a ferromagnetic waveguide
    Nikitchenko, Andrei, I
    Pertsev, Nikolay A.
    PHYSICAL REVIEW B, 2021, 104 (13)