Real Higgs pairs and non-abelian Hodge correspondence on a Klein surface

被引:0
|
作者
Biswas, Indranil [1 ]
Calvo, Luis Angel [2 ]
Garcia-prada, Oscar [3 ]
机构
[1] Shiv Nadar Univ, Dept Math, NH91, Greater Noida 201314, Uttar Pradesh, India
[2] Univ Pontificia Comillas, ICADE, Alberto Aguilera 23, Madrid 28015, Spain
[3] Inst CIENCIAS Matemat, CSIC UAM UC3M UCM, 13-15 Campus Cantoblanco, Madrid 28049, Spain
关键词
PRINCIPAL BUNDLES; REDUCTION; DUALITY; INVOLUTIONS; EQUATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce real structures on L-twisted Higgs pairs over a compact connected Riemann surface X equipped with an anti-holomorphic involution, where L is a holomorphic line bundle on X with a real structure, and prove a Hitchin-Kobayashi correspon-dence for the L-twisted Higgs pairs. Real GR-Higgs bundles, where GR is a real form of a connected semisimple complex affine alge-braic group G, constitute a particular class of examples of these pairs. In this case, the real structure of the moduli space of G-Higgs pairs is defined using a conjugation of G that commutes with the one defining the real form GR and a compact conjugation of G pre-serving GR. We establish a homeomorphism between the moduli space of real GR-Higgs bundles and the moduli space of representa-tions of the fundamental group of X in GR that can be extended to a representation of the orbifold fundamental group of X into a cer-tain enlargement of GR with quotient Z/2Z. Finally, we show how real GR-Higgs bundles appear naturally as fixed points of certain anti-holomorphic involutions of the moduli space of GR-Higgs bun-dles, constructed using the real structures on G and X. A similar result is proved for the representations of the orbifold fundamental group.
引用
收藏
页码:485 / 546
页数:62
相关论文
共 50 条
  • [21] ABELIAN VERSUS NON-ABELIAN HIGGS-MODEL IN 3 DIMENSIONS
    BUCHMULLER, W
    PHILIPSEN, O
    PHYSICS LETTERS B, 1995, 354 (3-4) : 403 - 408
  • [22] A non-perturbative argument for the non-abelian Higgs mechanism
    De Palma, G.
    Strocchi, F.
    ANNALS OF PHYSICS, 2013, 336 : 112 - 117
  • [23] A NON-ABELIAN HIGGS-MODEL WITH INSTANTONS AND SPHALERON
    OBRIEN, GM
    TCHRAKIAN, DH
    PHYSICS LETTERS B, 1992, 282 (1-2) : 111 - 115
  • [24] Non-Abelian Yang-Mills-Higgs vortices
    Navarro-Lerida, Francisco
    Tchrakian, D. H.
    PHYSICAL REVIEW D, 2010, 81 (12):
  • [25] Non-abelian Hodge moduli spaces and homogeneous affine Springer fibers
    Bezrukavnikov, Roman
    Alvarez, Pablo Boixeda
    McBreen, Michael
    Yun, Zhiwei
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2025, 21 (01) : 61 - 130
  • [26] RARITA SCHWINGER FIELD IN NON-ABELIAN KLEIN KALUZA THEORIES
    KALINOWSKI, MW
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (08): : 2441 - 2454
  • [27] Mirror symmetry and Langlands duality in the non-Abelian Hodge theory of a curve
    Hausel, T
    GEOMETRIC METHODS IN ALGEBRA AND NUMBER THEORY, 2005, 235 : 193 - 217
  • [28] Teleparallel equivalent of non-Abelian Kaluza-Klein theory
    Barbosa, AL
    Guillen, LCT
    Pereira, JG
    PHYSICAL REVIEW D, 2002, 66 (06)
  • [29] THE SCHWARZCHILD SOLUTION IN NON-ABELIAN KALUZA-KLEIN THEORY
    ARIK, M
    HIZEL, E
    MOSTAFAZADEH, A
    CLASSICAL AND QUANTUM GRAVITY, 1990, 7 (08) : 1425 - 1432
  • [30] SPINOR FIELDS IN NON-ABELIAN KLEIN-KALUZA THEORIES
    KALINOWSKI, MW
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1984, 23 (02) : 131 - 146