Real Higgs pairs and non-abelian Hodge correspondence on a Klein surface

被引:0
|
作者
Biswas, Indranil [1 ]
Calvo, Luis Angel [2 ]
Garcia-prada, Oscar [3 ]
机构
[1] Shiv Nadar Univ, Dept Math, NH91, Greater Noida 201314, Uttar Pradesh, India
[2] Univ Pontificia Comillas, ICADE, Alberto Aguilera 23, Madrid 28015, Spain
[3] Inst CIENCIAS Matemat, CSIC UAM UC3M UCM, 13-15 Campus Cantoblanco, Madrid 28049, Spain
关键词
PRINCIPAL BUNDLES; REDUCTION; DUALITY; INVOLUTIONS; EQUATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce real structures on L-twisted Higgs pairs over a compact connected Riemann surface X equipped with an anti-holomorphic involution, where L is a holomorphic line bundle on X with a real structure, and prove a Hitchin-Kobayashi correspon-dence for the L-twisted Higgs pairs. Real GR-Higgs bundles, where GR is a real form of a connected semisimple complex affine alge-braic group G, constitute a particular class of examples of these pairs. In this case, the real structure of the moduli space of G-Higgs pairs is defined using a conjugation of G that commutes with the one defining the real form GR and a compact conjugation of G pre-serving GR. We establish a homeomorphism between the moduli space of real GR-Higgs bundles and the moduli space of representa-tions of the fundamental group of X in GR that can be extended to a representation of the orbifold fundamental group of X into a cer-tain enlargement of GR with quotient Z/2Z. Finally, we show how real GR-Higgs bundles appear naturally as fixed points of certain anti-holomorphic involutions of the moduli space of GR-Higgs bun-dles, constructed using the real structures on G and X. A similar result is proved for the representations of the orbifold fundamental group.
引用
收藏
页码:485 / 546
页数:62
相关论文
共 50 条
  • [1] The non-abelian Hodge correspondence on some non-Kahler manifolds
    Pan, Changpeng
    Zhang, Chuanjing
    Zhang, Xi
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (11) : 2545 - 2588
  • [2] The non-abelian Hodge correspondence on some non-K?hler manifolds
    Changpeng Pan
    Chuanjing Zhang
    Xi Zhang
    ScienceChina(Mathematics), 2023, 66 (11) : 2545 - 2588
  • [3] The non-abelian Hodge correspondence on some non-Kähler manifolds
    Changpeng Pan
    Chuanjing Zhang
    Xi Zhang
    Science China Mathematics, 2023, 66 : 2545 - 2588
  • [4] CHAOS IN ABELIAN AND NON-ABELIAN HIGGS SYSTEMS
    DEY, B
    KUMAR, CN
    SEN, A
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (10): : 1755 - 1772
  • [5] General solution of the non-Abelian Gauss law and non-Abelian analogues of the Hodge decomposition
    Majumdar, P
    Sharatchandra, HS
    PHYSICAL REVIEW D, 1998, 58 (06)
  • [6] Wild non-abelian Hodge theory on curves
    Biquard, O
    Boalch, P
    COMPOSITIO MATHEMATICA, 2004, 140 (01) : 179 - 204
  • [7] Opers and Non-Abelian Hodge: Numerical Studies
    Dumas, David
    Neitzke, Andrew
    EXPERIMENTAL MATHEMATICS, 2024, 33 (01) : 27 - 68
  • [8] Non-Abelian Hodge Theory and Related Topics
    Huang, Pengfei
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
  • [9] Non-Abelian monopoles in the Higgs phase
    Nitta, Muneto
    Vinci, Walter
    NUCLEAR PHYSICS B, 2011, 848 (01) : 121 - 154
  • [10] Charging non-Abelian Higgs theories
    Antipin, Oleg
    Bersini, Jahmall
    Sannino, Francesco
    Wang, Zhi-Wei
    Zhang, Chen
    PHYSICAL REVIEW D, 2020, 102 (12)