Few-Shot Object Detection with Memory Contrastive Proposal Based on Semantic Priors

被引:0
|
作者
Xiao, Linlin [1 ]
Xu, Huahu [1 ]
Xiao, Junsheng [1 ]
Huang, Yuzhe [1 ]
机构
[1] Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200444, Peoples R China
关键词
object detection; few-shot learning; semantic fusion; contrastive learning; memory contrastive proposal;
D O I
10.3390/electronics12183835
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Few-shot object detection (FSOD) aims to detect objects belonging to novel classes with few training samples. With the small number of novel class samples, the visual information extracted is insufficient to accurately represent the object itself, presenting significant intra-class variance and confusion between classes of similar samples, resulting in large errors in the detection results of the novel class samples. We propose a few-shot object detection framework to achieve effective classification and detection by embedding semantic information and contrastive learning. Firstly, we introduced a semantic fusion (SF) module, which projects semantic spatial information into visual space for interaction, to compensate for the lack of visual information and further enhance the representation of feature information. To further improve the classification performance, we embed the memory contrastive proposal (MCP) module to adjust the distribution of the feature space by calculating the contrastive loss between the class-centered features of previous samples and the current input features to obtain a more discriminative embedding space for better intra-class aggregation and inter-class separation for subsequent classification and detection. Extensive experiments on the PASCAL VOC and MS-COCO datasets show that the performance of our proposed method is effectively improved. Our proposed method improves nAP50 over the baseline model by 4.5% and 3.5%.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Few-Shot Object Detection: A Comprehensive Survey
    Koehler, Mona
    Eisenbach, Markus
    Gross, Horst-Michael
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 11958 - 11978
  • [42] Few-Shot Object Detection with Weight Imprinting
    Dingtian Yan
    Jitao Huang
    Hai Sun
    Fuqiang Ding
    Cognitive Computation, 2023, 15 : 1725 - 1735
  • [43] Few-Shot Object Detection in Unseen Domains
    Guirguis, Karim
    Eskandar, George
    Kayser, Matthias
    Yang, Bin
    Beyerer, Juergen
    2022 16TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS, SITIS, 2022, : 98 - 107
  • [44] Few-Shot Semantic Segmentation with Cyclic Memory Network
    Xie, Guo-Sen
    Xiong, Huan
    Liu, Jie
    Yao, Yazhou
    Shao, Ling
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 7273 - 7282
  • [45] Few-Shot Object Detection Based on Contrastive Class-Attention Feature Reweighting for Remote Sensing Images
    Miao, Wang
    Zhao, Zihao
    Geng, Jie
    Jiang, Wen
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 2800 - 2814
  • [46] Few-Shot Classification with Contrastive Learning
    Yang, Zhanyuan
    Wang, Jinghua
    Zhu, Yingying
    COMPUTER VISION, ECCV 2022, PT XX, 2022, 13680 : 293 - 309
  • [47] IMPROVING FEW-SHOT OBJECT DETECTION WITH OBJECT PART PROPOSALS
    Chevalley, Arthur
    Tomoiaga, Ciprian
    Detyniecki, Marcin
    Russwurm, Marc
    Tuia, Devis
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6502 - 6505
  • [48] Cross-modality interaction for few-shot multispectral object detection with semantic knowledge
    Huang, Lian
    Peng, Zongju
    Chen, Fen
    Dai, Shaosheng
    He, Ziqiang
    Liu, Kesheng
    NEURAL NETWORKS, 2024, 173
  • [49] DFCP: Few-Shot DeepFake Detection via Contrastive Pretraining
    Zou, Bo
    Yang, Chao
    Guan, Jiazhi
    Quan, Chengbin
    Zhao, Youjian
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2303 - 2308
  • [50] Unseen Object Few-Shot Semantic Segmentation for Robotic Grasping
    Liu, Xiaozheng
    Zhang, Yunzhou
    Shan, Dexing
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (01) : 320 - 327